(9.

AAGA0505

RADC-TR-T7-148
Final Technical Report
May 1977

COMPILER ACCEPTANCE CRITERIA GUIDEBOOK

Proprietary Software Systems, Incorporated

1 f .«",a:‘ii i b L:.?I..b g‘&ﬁ? i 7
?r v D g ™ LY N
PR Read L mReonemen T

Approved for public release; distribution unlimited.

o

> ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
D Griffiss Air Force Base, New York 1344}

FILE

This report has been reviewed by the RADC Information Office (0OI) and
is rcleasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public including foreign nations.

This report has been reviewed and is approved for publication.

wnows. 24 LAY

DOUGLAS WHITE
Project Engineer

"APPROVED: ﬂ% % gm

ALAN R. BARNUM
Assistant Chief
Information Sciences Division

FOR THE cmmmmn:;? & J.Q d

JOHN P. HUSS
Acting Chief, Plans Office

_ATLESSION for

L]t

poc
UNANNDURCES
L TIRICATESE

¢

Do not return this copy. Retain or destroy.

R

R sl
J

oY
SECURITY CLASSIFI%A%ION OF THIS PAGE (When Deta Entered)
e,

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. GOVT ACCESSION NO,| 3. RECIPIENT'S CATALOG NUMBER

A Subiisie “ . [, . PERIOD COVERED
:90MPILER_§CCEPTANCE CRITERIA QUIDEBOOK ,ﬁ7 Eza‘ginal Technical Repgst.)
N | - :

6. PERFORMING ORG. REPORT NUMBER

N/A

8. CONTRACT OR GRANT NUMBER(s)
-

‘;5\}/ b o
L paossicrecctuss |

JoelfFleiss,
Guy/Phillips
Angel /Alvarez

. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS

Proprietary Software Systems, Inc. e
292 South LaCienega Blvd/Suite 218 . 1 62702F STy,
Beverly Hills CA 90211 véAssehay WAL L2
11. CONTROLLING OFF)CE NAME AND ADDRESS o .MEEQ_EL_PATE .
Rome Air Development Center (ISIS)]| AMay W77 | -
Griffiss AFB NY 13441 N ‘foUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(if d”ltf:l_'ll\{fom Controlling Qlllco) 1S. SECURITY CL ASS. (of this report)

S /) SSIFIED
ame {&/57?/2/ . UNCLASSIFIE
"“'—"—"'i e

15a. DECL ASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Douglas White (ISIS)

19. KEY WORDS (Continue on reverse side il necesaary and identify by block number)
Computers

Compilers

Programming Language

. ABSTRACT (Continue on reverse side !l necessary snd identify by block number)

PSS has composed a set of criteria that may be used to provide guidance in the
procurement of compilers. These guidelines are presented in tutorial form to
provide a useful tool to the individual who does not have experience in the
specific area of compilers. The guidelines contain a check list of items that
should be considered in the specification of a compiler and the acceptance and
testing of that compiler. Examples and sample forms are provided to demonstrat

the use of the guidelines described in the report. ‘K

1

DD 3%, 1473 eoimion or 1 nov 8 is ossoLETe —

T , - 7} SN s S

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) |

TR

Project Background

The acquisition of a compiler system often represents the

most critical aspect in the development of a successful

‘Software system. Heretofore, virtually no guidelines

were provided for buyers to facilitate the specification

of a new compiler.

Software development involves many considerations. The
selection of the appropriate language tools in the deve-
lopment process is not only critical, but will have major
effects in terms of cost, development time, efficiency,

portability, and ease of maintenance and modification.

Minimizing programming errors often depends a great deal
on matching the complexity of the application with an

appropriate programming language. Many variables should
be considered when deciding on the features of a particular

system,

There is a myriad of facilities and features that a compiler

syster might possess with respect to a modern computer
system. Also there is no doubt that the specific require-
ments for compiler systems in different installations are
widely divergent and based on the best utilization of

available resources for particular applications.

II.

Objective

The purpose of this research and development projecé was

AT

to define criteria and quidelines which could be used in
compiler procurement specification and acceptance decision
making processes. The resultant document, "Compiler

Specification/Acceptance Handbook" is intended to he used

L Capn et

as a quidebook in the specification of a compiler system

and in the analysis of its acceptability.

The purpose of the document is to aid the compiler pro-

curement agency. It is a quide to the specification of

appropriate compiler design, implementation, testing and

acceptance. No attempt was made to design or suggest a

universal set of tests for all lanquages and compilers.

In many cases, automated verification systems already

exist for this purpose (JCVS - JOVIAL Compiler Validation

System). It does suggest topics which should be considered

in designing tests for a specific project and indicates |

usual results of importance. The weighting factors

assigned are based on “sample* sy?tems and compiler

requirements and are by no means fixed. FEach agency must

assign its own weights and relative importance to each item.

The sample weights are hypothetical quidelines to help each !

procurement agency to develop its own historical specification/

acceptance criteria.

"

. III. The Handbook

The compiler Specification criteria developed provide respon-
sible individuals with a means of identifying the features
and facilities a compller system should contain to best
« i utilize its available resources within the necessary budget
‘ N and time constraints. A chart of major considerations was
developed with sub-charts delineating each major chart item.
It was the conclusion of this effort that the best method
for insuring an acceptable compiler is an acceptable ;
\ - specification. Therefore, a great deal of emphasis was |
h

placed on compiler specification criteria.

Compiler acceptability, therefore, became a matter of
i reviewing the items specified and assigning approptiate
. weighting scores which would eventually determine when a
E compiler is acceptahle. Acceptance matrices were developed :
which contain the major areas of consideration. These 1

matrices are to be used to calculate an acceptability

index. Sub-matrices were developed for each major item
within the matrix. A predetermined sub-matrix item weicht
along with a user determined acceptability factor will be

utilized to calculate a score. The score will then be

used as an index into an acceptability chart. The Weights
or potential scores used are based on sample matrix

applications to existing compilers.

PO 'r.;, Y
-

In addition to the charts and matrices, examples were

developed which should help the user to make specific
choices according to the desired meeds of a specific

compiler system.

The form and content of the handbook are based on the
conclusions reached during the research phase of the effort.
This included:
® A wide range of differing 'authoritative' and
‘expert’ opinions and definitions exist with respect
to:
compiler components, processes and structure
compiler 'features'
compliler ‘optimization' and 'optimizers®
programming language definitional forms
operating system functional characteristics
compiler efficiency

measures of efficiency

® A number of previous study efforts relating to
program characteristics of programs coddd in higher

order languages support views which are diametri-

cally opposed to each other.

@ That in all previous efforts significant and accurate
data has not been accumulated in a disciplined
fashion within a 'production' environment to lend

‘authoritative'’ credence to an absolute set of

criteria or gquideline for procuring a compiler.

@ That subjective (empirically developed over time)
‘weights' have to be established and assigned to
the following type items in deciding what specifi-

cations and requirements are to be included in

procuring a compiler: s
a. value of human resources in program develop-
ment, debugging and maintenance phases.

b. wvalue of computer time used in the compila-

tion process and that of the program execution :
time. ?
¢. value of linear time available to a project or
installation (time required to implement a
compiler).
d. value of the total dollar cost of developing,
debugging and maintaining a compiled with

extensive features.

(i O et -k
Ve [

T

8 . e e = iy iy

e -

Iv.

Puture Efforts--Updating the Handbook

It became apparent at a very early stage in the study that
if the procuring agency stressed a particular item in its
specification, then all acceptance criteria effected by

that item would be weighted heavily.

For example, if precise lanquage definition was stressed
in the specification, then the accuracy and reliability
of syntax/semantics analyzers (acceptance criteria) would

be heavily weighted.

Therefore, the sample Compiler Acceptance Evaluation Matrix
developed was based on a hyvothetical “average" compiler.
The values assigned represent composites of values derived

from the analysis of several languages and their compilers.

The procuring agency should prepare a new set of potential
scores as a function of lanquage, project, user group and
other constraints discussed in the handbook. For example,
a file management system written in COBOL would probably
not depend heavily on numeric accuracy (past 3 decimal
places) or even resource utilization: but, it is likely

that system interface would be extremely important.

It seems advisable that future compiler system contracts

include, as part of the payment, an amount based on the

.#

ot

%]

{ acceptability score. This additional financial remumeration
E could provide the incentive needed to turn acceptable and
E : good compilers into excellent compiler systems.

P

>

b

b

l

4

EVALUATION

The procurement of compilers for computer programming languages is an
important and difficult task. The quality of the resultant compiler and the
aids it provides the programmer can determine costs or savings that are many
times greater than the price of the compiler. Many government agencies that
do not have expertise in the field of compilers have requirements to procure
compilers including the specification and acceptance of these compilers. The
goal of the Compiler Acceptance Criteria Guidebook effort was to develop a
document that would provide assistance to government agencies in the procurement
of compilers.

Proprietary Software Systems, Incorporated was selected to develop guide-
lines and to produce the guidebook. The guidebook that was produced contains
information that will assist in the procurement of more cost effective compi-
lers by insuring more complete specification of the compiler and more adequate
criteria by which the compiler is accepted. Use of these guidelines should
result in higher quality and more useful compilers with the end result of lower

software costs.

DOUGLAS WHITE
Project Engineer

TABLE OF CONTENTS

Introduction. . . « « -« « ¢ « ¢ s+ « + o . Addendum. . A-iii

.
*
L]
[
'
("]

Part 1 Compiler Specification.

1.1 Compiler CostS. . . +» « + + s « « « & « » 1-3
1.2 Language Definition 1-14
1.3 Compiler Options.« . . « « ¢« ¢« . « 1-19
1.4 Extensibility . . « ¢ ¢« ¢« ¢ ¢ ¢ ¢« ¢ o« « « 1-33
1.5 Transferability ¢« « ¢« « « « 1-37
1.6 Environment ¢« « « « « « « s+ « « o« 1-50
1.7 System Interface. ¢« « « « « 1-52
1.8 User Profile. . . . ¢ ¢« + ¢« ¢ o« « « « +» « 1-58
1.9 Documentation . . . « ¢« « « o ¢ o « s« » « 1-60
1.10 Schedule. . « « ¢ « o o s « o o o« o o o o« 1-65
\ 1.11 Acceptance TestS8. . . « « « « « « » « « o« 1-67
' 1.12 Maintenance and Support ¢« +« .« . . 1-72
Part 2 Compiler Acceptance « « « o » « o « 2-1
. 2.1 Accuracy and Reliability. 2-4
. 2.2 Resource Utilization. 2-18
2.3 User Interfa8Ce. . +« « ¢ « o o o o o o o« o« 2-28
2.4 Documentation . . . e e e s e e e o & « 2=30
2.5 System Interfaces « o« « ¢« ¢ o« « o 2-35
2.6 OPtIONS ¢ « ¢ ¢ o « o o o o e 2 e e o o o 2=37
' 2.7 Extensibility . . . « . ¢« ¢« ¢« e ¢ s s . . 2-41
2.8 Transferability . . . e s e s s+ s « s« 2-43
é 2.9 Schedule and Installation e o o s o s o o 2-46
2.10 User Profile Adherence. . . . « « « « « » 2-49
Part 3 Compiler Acceptance Evaluation Matrix . . . 3-1
APPENDIX A References. . . « ¢ ¢ « ¢ s o o o + o « A-1
o :
- Addendum

A-1

INTPODUCTION

This document is intended to be used as a guidebook in the
specification of a compiler system and in the analysis of

its acceptability. It is divided into three major parts,

compiler specification criteria, compiler acceptance

scoring, and a sample acceptance scoring matrix.

Part 1 may be used as a glossary of caompiler terminology
It should be reviewed carefully by the reader unfamiliar

with these terms before nroceedina to parts 2 and 3.

The purpose of this document is to aid the compiler pro-
curement agency. It is a guide to the specification of
appropriate compiler design, implementation, testing and
acceptance. No attempt is made to design or suggest a
universal set of tests for all languages and compilers.
In many cases, automated verification systems already
exist for this purpose (JCVS - JOVIAL Compiler Validation

System). It does suggest topics which should be con-

sidered in designing tests for a specific project and
indicates usual results of importance. The weighting
factors assigned in Part 3 are based on "sample" systems
and compiler requirements and are by no means fixed.
Each agency must assign its own weights and relative

importance to each item. The sample weights are

Addendum e - -
A-ifi = -

PRECEDING PAGE BLANK.NOT FILMED

~—— 2 v

hypothetical guidelines to help each procurement agency
to develop its own historical specification/acceptance

criteria.

Part 1, Compiler Specification Criteria, provides respon-
sible individuals with a means of identifying the features
and facilities a compiler system should contain to best
utilize its available resources within the necessary budget
and time constraints. A chart of major considerations is
provided with sub-charts delineating each major chart item.
It was the conclusion of this effort that the best method
for insuring an acceptable compiler is an acceptable
specification. Therefore, a great deal of emphasis is

placed on Part I, Compiler Specification Criteria.

Part 2, Compiler Acceptability, reviews the items specified
in pPart 1 and assigns appropriate weighting scores which
will eventually determine when a compiler is acceptable.

The acceptance matrices are provided which contain the major
areas of consideration. These matrices are used to calculate
an acceptability index. Sub-matrices are provided for each
major item within the matrix. A predetermined sub-matrix
item weight along with a user determined acceptability

factor is utilized to calculate a score. The score is then

used as an index into an acceptability chart. The weights

Addendum
A-iv

or potential scores used in Parts 2 and 3 are based on

sample matrix applications to existing compilers.

In addition to the charts and matrices, examples are
provided which help the user to make specific choices
according to the desired needs of a specific compiler

;- system.

Part 3, the sample Accertance Scoring Matrix is a

summarization of the topics discussed in Part 2. 1In this
K . matrix, the acceptance items are listed with the corres-
‘ pondina weightina factors appropriately broken down into

sub-matrix form. 1

' It should be noted that the specification and eventual
acceptability of a compiler system is a complex process. :
' This guideline establishes an orderly approach in deter-

mining the svecification and acceptability criteria for

&
a compiler system. It thereby helps to insure a thorough
. and objective decision-making process when selecting a
compiler.
S Addendum

A-v

Part 1 Corpiler Svecification

i
The acquisition of a compiler syster often renresents the
most critical aspect in the developrent of a successful ﬂ
: software system. Heretofore, virtually no guidelines d

were provided for bhuyers to facilitate the specification

of a new compiler.

foftware development involves many considerations. The
selection of the appropriate lanquage tools in the deve-

lopment process is not only critical, but will have major

St o] o s " _— I
: S = L . -

effects in terms of cost, development time, efficiency,

portakility, and ease of maintenance and modification.

Minimizing programming errors often devends a great deal

on matching the complexity of the application with an appro-
priate proaramming langquage. Many variables shouléd he con-
g & sidered when deciding on the features of a narticular]

system.

The charts on the following vage present the major areas
of concern when svecifying a compiler. Fach item is then
further delineated in subsequent sub-charts. 211 items

‘ in the sub-charts are discussed as to their relative merit

in the acquisition of a compiler system. E

There is a myriad of facilities and features that a com-

piler system might possess with respect to a modern com-

puter system. It is assumed that the specific require-
? ; ments for compiler systems in different installations are i

widely divergent and based on the best utilization of ik

available resources for particular applications.

The major areas of consideration in the specification of

i a higher level language compiler include:

Comniler Costs

Lanouage Pefinition

? Compiler Options

Fxtensibility :

. Transferability

} é . Computer Fnvironment

fystem Interface

. User Profile

Pocumentation

. fchedule and Installation

Acceptance Tests

Maintenance and Support

AL it e o

COMPILFR SPECIFICATION - MAJOR AREAS OF CONCERN

The charts on the following nages further delineate each

Nl sl

b -, . of the ahove major areas of concern.

1-2

1.1 Corpiler Costs

Of primary concern in the acquisition of 2 compiler is
the "actual"” dollar cost. Since the cost associated with
a compiler svstem involves the original investments as
well as other significant on-going expenditures, the 1

topic of "actual" cost becomes increasinalv complex.

Usually, the compiler procuring agency is only concerned
with the initial "out-of-pocket"” outlay. The following
chart and subsequent explanations may help the compiler
specification writer to develop insights into "actual"

compiler costs. Actual costs include:

)

Purchase Price

Cost of Comnilation

cost of Execution

Level of Fxnertise

Pegsource Utilization

Resource Acquisition

Maintenance Costs

Fnhancement Costs-Options

Training Costs]

Pe-tarqgeting Costs

Re-hostina Costs

COMPILER SPECIFICATION - COMPILER COSTS

1-3

® Purchase Price

P major consideration in the acquisition of any item
is the purchase price. Although the purchase price is
: almost always not part of a compiler specification,
' it is often specified indirectly (in terms of man-hours
and job classifications). Virtually all items delin-
eated in the specification charts have a direct bearing

on the purchase price.

3 3 The comniler specification writer should investicate L
the relative costs and benefits of the features under ;
consideration. This will assure the most effective

? usage of the availahle resources. The relative merit
of a srecial or "extra" feature must be analvzed in
' relation to its added cost in order to maximize the 1

4 é utility of the compiler system.

It is very common in the development of a compiler system
to have progress payments made as the contract proceeds. |
This is usually due to the large expenditure of labor

and cormputer time often necessary to complete a compiler

% project. It is highly improbable that any software
organization specializing in compiler implementation
would be willing or ahle to work for long periods with-

out financial reimbursement.

1-4

s
%
X
&£

Since compiler system contracts are usually fixed price,

as oprosed to time and materials, it is advisable to
identify milestones at vhich noint partial funds might
be made available to the developing agency. Progress
payment provisions relating directly to partial product
deliverables have to be carefully constructed to insure
that the halance of funds flowing to the vendor is
anproximately equal to the value flowinag back to the
user. In this manner, project termination will not

create major hardships for either partv.

fpecific items include:
e Rasic compiler (software) purchase price
® Option prices
e Advances

® Milestones
Cost of Compilation

A major cost that is usually ignored in the specifi-
cation of a compiler is the cost of compilina a proarar.

Individual comriler implementations of the same corpiler

specification can have vastly different costs associated

with the translating of a procaram.

Part of any compiler specification should contain a

maximum cost per specified test program. The test

1-5

TR T

programs should represent a reasonable set of tests in
terrs of expected features used. ONf extreme importance
is the compiler's operation during large compilations.
Nnften a compiler will perform well for small modules but
will run slowly when reachina certain "intrinsic limits."
Too often compiler buyers have neglected this area and
have received a compiler that met all specifications,

vet was of little practical value.

Snecific items include:
® small program costs per statement
® large program costs
e medium or average costs

® overhead costs
Cost of Fxecution

The code generated by a compiler and the tools provided

to improve the efficiency of the code can be vital in the
overall effectiveness of the comriler systems. M compiler
system is merely a tool to be used in the develooment of

software.

The intended application of rrocrams aenerated by a
compiler couvled with the expected life of the comniled

program (nurkter of times to be used) can often make

1-6

|

this aspect the most critical of all cost items. Depending

on the particular aoplication, the erudite writer of
compiler snecifications should include some minimum
accentable ratio of compiler-code-generated execution
cost versus the execution cost of an identical machine
lanquage rroaram writter by an above averace programmer.
It should be noted that the term execution cost implies
not only execution time, bhut also computer resources
utilized by the compiled@ program (memory, disk, I/0
access, etc.). This may be handled in a small, medium,
larce proqgram fashion as for compilation costs. Sfpecific
items of concern are:

® CPU time per statement or program

® core usace

® I/0 access time ‘

e wait or dead time

e disk storace

® tape drive rmounts

In large computer systers there will often be a machine
unit cost of execution formula which may be used for
computing total cost. This may be quite complex

gne is left to the specification agency discretion. A

prime example is the 0S 370 HACP system.

e e e £ Sy R

® Level of Expertise

Another often neglected cost item is the "quality" of the
compiler system as a major determining factor in the level
of exvertise required by users. The relative time it takes
to get a job done is usually directly related to th; level
of the lanquage (assembly-higher level-smecial purpose)

and its features.

If a junior level programmer can accorplish the productivity
of a senior level programmer because of the compiler
system's lanauaqge and features, then the dollars saved
hecome a major cost factor. The quantitative analysis and
relative merit of new features is very important to the

future costs associated with the compiler's usage.
RPesource Utilization

It is not at all uncommon for the vendor to require the
usaae of resources supplied by the procuring agency. At
a rinimum these resources will prohably include the
narticipation of staff in both the design concept and

during the compiler acceptance approval cycle.

It is quite common for the buying organization to supply

machine time for the development, checkout, and installation

of the comniler system. In additinmn, other resources are

often provided in terms of office space, telephones,
secretarial services, keypunchinag, etec. Thus, it is
necessary to stipulate what tvpes of resources will be

supplied hy the procurina acency.

If the maximur level of resources is exceeded,

then the specification should state the consequences
(charges). This will insure that excessive

resource utilization will be minirized bv the vending

oraanization.

On the other hand, verv stiff penalties may result in
inadecuate testing, or non-optimiéed code generation.
Resource expenditures should he as liberal as possilbkle

to insure effective, on-time deliveries. Low resource
costs usually ray te obtained by use of slow turnaround,
lov: priority computer usaace and suhsequent schedule delays.

Therefore, resource availahilitv is also of nrimary concern.
Pesource Pcquisition

Tn some cases it ray be necessary for the procurinea
agency to purchase additional hardware to facilitate

the development or use of a compiler syster.

In general, the procuring agency must determine the

resources to be provided in advance of contract negotia-
tions or even PFP preparation. Appropriate resvonses
should include a statement of resources recuired in
addition to those listed in the RFP. Pardware items
most likely to be>critica1 in compiler utilization are:
@ Core storage (fast)
® User interface devices (printer, CRT, card readers)
® Intermediate I/0 (modems, multinlexors)

® Ffecondarv storage devices (disk)

Proper allowances rust be made for these items to
insure a compiler system which will be available to the

raximum number of users over a full range of applications.
Maintenance Costs

The corpiler smecification should contain a provision for
vendor maintenance after acceptance. The maintenance
period should extend for the useful life of the product.
A heavily used compiler will become reliable within a

short period of timrme.

In this case, a front-loaded maintenance budget is
recommended. In ceneral, the vendor should re required

to supply the first year's maintenance as pvart of the

corpiler development costs. A typical raintenance budget

is:
Years After Acceptance Percentaae of Develonment Cost
0-1 0 8
1-2 20%
2-1.ife of the Product 10%

This is subject to the choice of vendor (reputation and
location), comnlexity of the langquage/project, time

schedule for imolementation, and previous experience.
Enhancement Costs-Options

The compiler PFQ should explicitly require fixed price
estimates for enhancements 2nd additions to the basic
svstem. Itéms to consider include:

® Debua packaces

e Optimization routines

® Langquage extensions
Training Costs

Initial procuring agency personnel trainina and education
costs should be included in the vendor proposals at a very
low cost. Training includes prorer documentation of the

language, compiler usaace and program listinags. Additional

specifications for later training of other vendors/users

of the compiler must be included. Too often, an agency
b2comes demnendent on a particular vendor for suksequent
acquisitions. Usually, this is because the aagency-owned

b compiler cannot be altered/maintained by other vendors.

The oriainal vendor must bhe required to accept responsi-

hility for training in subsequent installations as well.

W T Y v e ey

® Pe-tarceting Costs

\ The compiler spec¢cification must include provisions for

L TRTY AR e o e s

additional target computer implementation. ™he cost
p;oposals should irclude vendor costs estimates for the
full implementation and costs for training of other
_ vendor personnel. The specification should require an
absolute minimur cost fo. re-targeting and concommitant
advanced technology. The code generator cor tarcet
dependent rortion of the compiler should te one of the

least expensive to duvlicate.

® Re-hosting Cnsts

Pe-hosting is the prrocess of moving the compiler system

to a new computer without changing the result or outout

(target orograms). The vendor should he required to

L a6 TR T

prepare cost quotations for every major host svstem to he

used by the procurina aaency and major civilian companies.

1-12

R o i

The re-hosting costs should include estimates for original

and new vendor implementations.

1.2

l.anquage Definition

The most important part of anvy compiler system is its
ability to properly translate each specified lanquage
form to obtain the eventual execution of the compiled
program. The specification of the features of a compiler
lanquaage should be as clear as possible in order to avoid

any misinterpretations.

feveral mathematical lanquages have been developed that
facilitate the specification of compiler features.
Pelatively accepted, mathematically oriented languages, such
as Packus Nauer, already exist for this purpose. 1In
addition, it is also advisable to have a brief English
explanation of the various language corponents. The
rlarity of syntax and semantic representation is of

utmost importance to the compiler implementor as well as

the eventual user.

In order to eliminate any ambhiquities or misunderstandings
the definition of a new computer lancuages' format must
be defined as clearly and concisely as possible. Meta-
linquistic syntactic definitions have heen developed in a
complete, efficient, and concise form. 1In fact, the

success of these definitions can be judaed from the

1-14

diversity of lanauage descriptions that have been

developed from a meta-linquistic notation. !

The lanquage in which the compiler is defined is termred a

meta lancuage. The meta lancuage must be uniquely
distinquishable from the lancuage being described. The é
following chart lists the items of a compiler lanauage

vhich should be defined in Foth a meta languaqe as well

as in a onrosaic manner.

& If the lanquaage to he specified already exists in other

‘ environments, then it is highly likely that a formal
reta-linquistic mathematical srecification is alreadv in
existence. Ponular lancuaages such as FORTRAN, COPOL, RBASIC,
ALGOL, PI /1, and JOVIAL have all been defined via vigorous
notations. 2Asrects of rmost lanquaces can he catecorized

and described as:

Sfyntax Characteristics

. Declarative Statements

Control Statements

. Subroutine Statements

Processing Statements

Allocation Statemrments

Input/Output Statements

Formating Statemrments

Compiler Directives §

1-15

h L) :) : —— ‘ . ; I‘

Svntax Characteristics

The specification of a compiler would be meaningless with-

out a formal description of the language to be translated.

The syntax rules for the followina items should be

included in the specification:

® Character Set

® Symbol Construction
Kevwords
Statement structure
Comments
Statement Termination
Variables
Logical Operators
Relational Operators
Arithmetic Operators
Evpeessions
Literals
Functions

Constants

Declarative Statements
The declarative statements specify the variahles that
will be used in writing a program. Often, the declara-

tion statements include information that describes

attributes of the variables.

Control Statements

Control statements control the program flow. Transfer
staterments, conditional statements, switch statements,
iteration statements, and decision table staterents

are examples of control statements.

fubroutine Staterents

fubroutine statements provide a means of modularizinag a
program. Usually these statements include facilities for
declaring a sukroutine, referencing a2 subroutine, and
exiting a subroutine. In addition, subroutines often

have the capability of passing arguments,

Assianment Statements
Assiaqnment statements provide a means of assignina

values to variables.

Allocation Statements

?llocation statements control the vlacement of

variables in memory. In addition, allocation statements
declare the dimension of variables. 1In some lancuages
the declaration statements perform some of the

functions of the allocation statements.

Sw——-

Input Output Statements
Input output statements provide a means of getting
information into and out of a computer. The capability

to describe the devices is included in some languages.

Formating Statements
Formating statements describe the format of data to be

read into or out of a computer. a

1l-18

e SRR TR

T

1.3

Compiler Options

There are a myriad of capabilitiegs and facilities that

a compiler may possess or influence with respect to a
modern computer system. This guidebook assumes that
compiler requirements among different installations are
widely divergent. This is especially true when selections

are based on a maximum utilization of available resources.

The following chart and subsequent explanations define
numerous capabilities and facilities which improve the
utility of a compiler system. Assignments are made for
expected dollar benefit versus anticipated costs of each
compiler option. This eases the choice of items to

include in the specification.

1-19

E
S

Compiler Types

Subsets/Special Versions

Optirmizations

Measurement Tools

Nehua Aids

Test 2Aids

Documentation Pids

Cross Peference/Dictionaries

fource lLibraries

Compools

Text Maintenance

Directives

Netailed Diaanostics

Peformatters

ctandard Verification

fource lListings

Partial Comnilations

COMPILFR SPFCIFICATION - COMPILER OPTIONS

1-20

Compiler Types

The purvose for which a corpiler will be used and the
intended anmplications for which proqrams will be develoned

all have an impact on compiler type.

e RATCH

RATCH compiler requires all input files to be suprlied
before compilation. This is the most porular iﬁplemen-
tation type for compilers. It provides for the most

efficient means of minimizing the cost per compilation.

® CONVEPSATIONAL/INCREMFNTAL

The CONVFRSAPTINNAL compiler communicates with the user
throughout the translation process. The user can
continually make correction/modifications as the
comnpiler translates/evecutes the users' program. A
conversational compiler is usually very effective for
the development of a program where compilation cost is

not very immnortant.

® INTFPPRETIVE

An INTERPPFTIVF compiler performs the execution of a
proaram directlv rather than preparinc an object version
of the proaram to be executed later. 2An interpretive

compiler usually qgenerates less efficient object code

1-21

¢ &

E»- o

hut minimizes comnilation time and re-targeting tasks.

Subksets/recial Versions

The primary motivations for suhsettino are cost and tire.
Snbsets rerrmit smaller comnilers which can be developed
rore economically and/or in less tirme. It is important
that a suhset he a "prorer" subset to insure urward com-

nmatibility.

0ften a corniler of an already existinoc lanaduage is

srecified as A nrorer sulset exceot for several "snecial”
fratures. These 'subset versiens” special features mav
ke more costlyv (in terre of compatihrilitv and transfera-

kilitv) than the henefits thev provide.

Optimization

MNrer the last two Adecades numerous techniaques have heen
develoned to imnrove the efficientv of code generated

rv comnilers. Usuallv these ontimization features are
divided into local and global ontirmization. The cost
associated with develonina optimization facilities for a
corpiler can usuallv be dividAed inte two areas: a2dditional

Aeveloprent rosts and more costly cornilation.

1-22

|
?

fa W

e

At D a e S

e

Mormally, if sophisticated optimization facilities are to
be developed, it is advisable that they be conditional and
selective. For example, it is not usually necessary to
ootimize application programs during their development
cycle. In addition, numerous studies have shown that
srall portions of a program usually consume the majority
of a proaram's execution time. Hence, ovtimization of
selected areas usuallv proves the most effective in terms

of cost/benefit ratio.

There are often several alternatives to expensive optimiza-
tion facilities. These include measurement facilities
vhich pinpoint areas to he optimized and facilitate
interfacinag to assembly lancuage programs. Each

optimization facility should be weigheéd in terms of cost/

benefit ratio.

Local optimization features are usually less expensive
than alobal optimization facilities. The followinag is o
list of potential local optirmization facilities:

® Reordering of the evaluation of an expression

® Efficient use of registers and memory

e Common expression elimination

@ Redundant statement elimination

® Dead variable elimination

= -

® PFactoring (eg. A*B+A*C to A*(B+C))

® Constant evaluation

® PRetarcetina of jurps (ea, COTO 1.2 hecemas CATNH 13
if 1.2 econtains a 6NTO L3)

e Flirmination of redundant stores

® Ffficient ntilization cf target machine irstructiors

The €nlloving is 2 list of alohal ontimization facilities:

® Flow analysis - this is usually a verv costly
ontimization technique. 1Its henefits involve thre
re-orderinag of statements and the elirinration of
unnecessary staterents. Many of these benefits can
also be attained throuch ovrorer prograrmina techniques
by the uvser.

® Tlimination of assicninog a variahle to an e¥rression
that is never used,

® PAase reaister versus active reagister usaqe.

® Code redistribution ~ movina code seqgrents to a

nath that eliminates redundant execution.

“aasurerent Tools

veasurement tools are ar invaluatle asset in improvinc the
performance of a cormniler system. There are three ltasic
areas of potential imnrovement that measurerent svsters

can he used in a comniler system. These are:

1-24

® Measurements to improve the language itself.
{ . ® Measurements to improve the performance of the
compiler's operation.
@ Measurements to improve the performance of programs

that have been compiled.

Usually measurement facilities can be built into a
compiler at a fraction of the cost of optimization
features. It is recommended that these facilities be

both optional and selective.

-

The gathering of statistics, such as features used:;
combinations of statements:; and frequent user errors
provide valuable insights to language designers in

terms of improving the utility of the language.

Statistics regions help pinpoint areas to be cptimized.
4 These statistics can point out vital areas of the

compiler/application program that should be optimized.

PR P T —

e Debug Aids

One of the major purposes of a higher level language is

to simplify the cost of developing and maintaining programs.

Debug aids are indispensable tools in the checkout of new

W

[3

; 1-25

programs/modifications or in the location and eventual
correction of problems. The following is a list of debug
aids:

® Corrections

The abilitv to rodifv obhject ovroarams without

having to recompile saves ktoth dollars and time.
e Snaovshots/Dump g
The displaying of variables in a forrmat that is
corpatitle with the language is very beneficial. b

Item/Locatien Modification

-

The facility of being able to see a variable's
modification at a particular location (routine,
statement numher) is extremely helnful in the
checkout of a prearam.
. ® Traces
The disrlay of secuences of proaram instructions
(especially symbolically coupled with iterm roAdifi-
cation) is useful for efficient program checkout.
e Conditionality

. The abilitv to invoke the above features conditionally

is a very powverful prograr development methodology.

3

1-26

Test Aids

The aeneration of test programs to verify the "correctness”
of a set of progqrams is a major consideration when develor-
ing a system. 1In the last decade tools have heen developed

which aid the generation of test piroqrams.

Intrinsic to these tools is a2 flow analysis of the program
to be tested. Since compilers must make a like analysis
during global ontimization, several compiler systems now
include the preparation of teat proarams as an integral

part of the syster.

Documentation Aids

The facilitv for effectively interjectinea mregqram corments
into the source prooram is of utmost importance. It is,
however, an intearal part of the lanquaae definition and
not an option. The compiler may be used to enhance this
feature by specially formating printinc of comments,
automatically indentino loop structures, and summarizina
classes of variables and statements used. Many of these
aids are traditionallv supplied via the cross-reference

facility.

1-27

g™

Cross Peference/Nictionaries

Most corpilers will output an alrhabetized syvmbol table
(dictionary) at the conclusion of each mndule. The
dictionary provides an easv-to-use reference to the

tvoe and value associated with each user declared variahle.

A cross reference nrovides a means of identifyina where
nach variahle is referenced in a varticular rodule. This
facility is a very imncrtant asset in the development and
maintenance of nroorars. Tn lanaquages such as JOVIAL the
score of each varieble is also of utmost irrortance and

can re further emnhasized here.
fource lLibraries

Nnften, an anvlication will contain a set of proarams with
identical source stateirents (usually declarations). It
is hoth rore economical and less error prone to ke able
to reference a set of source from a single staterent

rather than including the same source in numerous

modules.
Comnools

rompools nrovide a reans of aathering cormon variable

definitions into a sincle file. Crmpools usually differ -

e Yl ki

1-28

from source libraries in that thev have been pretranslated
and exist in a more readily accessible form. Usually a
lanquage that facilitates compools has specific rules

regarding undefined variables in a program and their

accessability from the compool.

® Text Maintenance

Text maintenance provides an efficient means of maintain-

ina and modifying a source proaram. Nearly all major

> ot

computer systers already contain text editors and source
maintenance pnrograms. 1f neither of these are availatle,
the compiler system should ceontain a facility for up-

dating source files.
® Directives

L é Directives provide a means for the user tco cuide the i
corriler in performing & particular corpilation. The
" utility of the Airectives depends on the apprlication to ke
rerformed and the function of the directive. The
. following is a brief list of some of the directives wvhich
might be included:

® Macro - A set of directives vhich perrits the user

to define nev facilities in terms of existina

facilities. This facility can make the lancuage

M
’

i
)
-«

more flexible to future needs {(kut ray cause
future compatibilitv problems).

® Conditional - A set of directives that determines
vhich staterents are to he compiled. This allowvs
a source nroaram te adant to Aifferert environrents
tased on nredefired conditions.

e Notimizatimn - A set of directives allowinag the
user to srecifv wvhich areas to coptirmize and the
ratio of sreed wvarsus space considerations.

® ‘*ofe - 2 et of directives vhickh influences the
tyre of code to te aenerated (ea. whether or not a

sutroutine is to he re-entrant).
Netailed Niagnostics

"re level of inforration provided bv a cormpiler for error
rmascaars is extremelv important. The ahilitv of the
corniler tn pinroint the reason for the errer is vital to

the efficient development of softvare.

Tt is unadvisahle (unless nther constraints prevail) to
have the comriler lump numerous error ressages into a
sinale cateaorv. Tt is also useful to have a Adiacnostic

surmary at the conclusion of each mocdule.

1-30

Reformatters

A reformatter rearranaes the display of a source program.
This is useful if previous or present programs are beina
developed that do not use any standardization in terms of

source arrangerent.
ctandard Verifications

Often a denartment will develop a set of "good programming
standards.” "Included in these standards might be
structured nroaramming concents, variable identifier
rules, etc. It is bheneficial to management if the
compiler syster contains facilities for monitorino and

renortino any excerntions to the standards.
Source listinas

A compiler will usually list the source program it has
translated. It is often helpful if the user can
optiocnally obtain an assemhly listino expansion of his
source. If an asserhly listina is provided, then it is
extremelv heneficial if there is some direct correlaticn
hetween user defined varialles and the variable names
generated by the comniler. This makes the assermhly code

considerably more readable. 1In addition, such things as

1-31

location, object and sequence nurters should he included
to aid the nrocrammer in developina/raintaining his or
her program. It is also usually beneficial if the
assemhly listing is interspersed with the corpiler source
listina. ™itles, Adates of cormpilation, proararmers name,

and similar items should also be provided in the listing.
Partial Compilatioens

» martial cormpilation facility allows the proararrer to
control the rehavier of the corpiler. O0O€ften a compiler
is irrlerented as multirle passes thronch a enurce file
(or an intermediate lancuaqe translation of the source).
A Adeveloper of a nev »rocrar rayvy only desire a listirc of
his source and anv svntax errors that exist., Tt is crften
nossirle to accornlish this éask with a fraction of the

tire/cost normally required for a complete corpilation.

1-32

;
,
3

1.4

Extensibility

A comniler is extensiltle if it can easily be modified
to include new features. In general, a corpiler that

is irplemented usinag "good preararming practices,”
(structured proagrarmming, top-dovn desion, srall modules,
etc.) is usually readilyv medifiatle for future require-

ments.

If 2 new lanquage is keina irplerented, or an existinc
lanquage is expected tc be medified, it is advisahle
that the specification include an "oren-end" desiqn.
The followina chart dericts iters wvhich are essential

to a compiler system's extensibility:

“odularization

MNnen-Fnd Desion

Tar-down Desian/Structured Proararrinc

| “inimal User Pestrictions/Corpiler Limitations

Parameterization

COMPII.FP SPFCIFICATION - FYTENCIPILITY
Modularization

m™he idea of bhreakira a proararring sveter intn grall
rmodules not onlv benefits program checkout and maintenance,

but it also makes the corpiler easier to modify for future

1-33

requirements. A complex corpiler systerm requires numerous
functions. It is quite conceivable to find in eycess of
150 distinct modules for a well structured cnmpilér system.
It is certainlv advisable that the srecification contain

a staterent that the corniler consist of multiple modules
and that no medule should be more than some finite

nurker of staterents.
Noen-Fnd Nesign

Yhen desioning a comniler system, data structures are
develoned which are used to retain such information as
variahle type, variable dimensions, nare scone, error
directories, cross references, and literals. In addition,
internal translations/marsinag of socurce often huild
intermediate lancuaqge forms with character strings

renlaced by nureric representations.

[y

It is crucial that the cormviler desicner "leave romm” for
future entities if extensibkility is to be meanircoful.

For exarple, assume 3 tkits are allotted throuahout the
intermediate languace to designate type of operation.

“urther assume the followino eight entries zlreadv exist:

1-34

) Pinary

Operator Representation Meaning
+ 000 Add
- 001 fubtract
* 010 Multioly
/ ‘ 011 Divide
& 100 Logical 7nd
I 101 logical oOr
- 110 Logical Vot
t 111 logical Exclusive Or
x Now assume that the usage of these three bits is

scattered through nurmerous modules. If it later becomes
desiratle to add several new operators (ea. exponentistior,
relationals, etc.), it might he extrerely difficult. This
would especially be true if the three bit item was con-

J tained in a structure which had no additional or unused

é snace.
e Top-Nown Nesicn/Structured Procrarm

A top-down desiqn usuallv allows for the simpler under-
. standing of the bhasic flow of the svster. Coupled with

structured proararrino, the hasic logic of the svster

is not only more maintainakle bhut also easier to rodify

for future recuirements.

1-35%

T

Minimal User Pestrictions/Compiler Limitations

Often compilers are implemented with fixed limits in

terms of items such as the number of symbols, number of
records per source statement, and numrer of parentheses in
an expression. tlsually these limitations are a result of
noor desion techniques and/or inadequate use of the proper

data structures.

Stacks, circular queues, variable length arrays, pointers,
and generally well Aesigned data structures will minimize
the number of compiler limitations and, hence, user
restrictions. Minimization of restrictions is verv

crucial to cormpiler extensibility.
Parameterization

Parameterization is a method wherebv a program may easily
he adjusted to accept new proqram, hardware or system
attributes or restraints. It is extrerely important that

values vhich define arhitrary limitations ke parameterized.

The compiler implementation languaqge should definitely
include a facility for parameterization. The corpiler
specification should require the usage of this feature.
cee the following section on transferability for a more

detailed discussion of parameterization.

1-36

1.5

NN
‘k

Transferahility

Transferakilitv is a measure of the ease of moving a
comruter rrograr fror one cormnuting environment to
another. Transferabrilitv with respect to a compiler
system can he divided into two major areas: the movement
of the compiler to a new host corputer,‘and the gene-

ration of nkhiject code for a different tarcet corputer.

These tvo areas represent substantially different
nrokler areas, althouagh there is consicderatle overlan
invelved with roth., TIf it is intended for the corpiler
to onerate on rultirle hosts or more than one taraet,
then the snecification should@ contain a future ortion

requirine the desired task.

2 usual judaement cof the desirezstility of anv transfer
effort or technique is its cost effectiveness. fneci
ficallv, the fiagure of rerit is the cost per transferred
unit. The transfer is comrmplete vhen the end-user is

as satisfied with the comnilers' oneration as he wvas

refore the transfer.

The followina chart and suhsecuent evrlanations help

depict areas of consiferatien {nvelvina transferabilitv.

1-37

v

c .2 afaniias

o — -

Compiler Type and Structure

Irplementation Lanaquage

vodularity

Parareterization

Code Constraints

FPmulators/Simulators

COMPILFR CPECIFICATION - TPRANEFFPARTLITV

Corpiler ™yre and Ctructure
» variety of basic comniler structures exists. The
tvee of structure has a trerendous rearing as to

future adantation to new tarcets.

Numerous efforts have been initiated to enhance
corniler transferahkilitv, especially in the area cf auto-
ratic compiler ageneration systems. €“uch concepts as
meta-compilers, svntax table driven comnilers, and
racro hackend processors have had only minor successes

in the adantation of a compiler to a new tarcet rachine.

These that are successful, in terms of inexpensive
transfer cost, have alrmost alwavs proven too costly
in other areas, (i.e. voor code ceneration, extremely

long compilation time).

A less nopular method involves comnilers which génerate

interpretive code- With interpretive compilers all
;that is usually reaquired is the imnlermentation of a
new set of run time routines. The onlv major drawhact
is that prograrms will execute considerabhly slower.

They will, hovever, corpile faster.

Ps rreviously rentioned, it is strongly addisable to

modularize the irplementation of a compiler syster.

In addition, a corpiler’'s rodules can usually ke

searmented into the follovina marte:

® Proogram Control] -- Controls the overzll flow of the
comniler and calls the prorer routines
hasmrd on the staterents heina nrocessed.

® Parser--Translates the hicher level source into
an intermediate lanauace,

® Fynrnression Fvaluator--Polishes evpressions so that
thev are more concducive to code generation.

® Optimizer--Scrutinizes the intermediate languaaqe
to rinimize nurbher of required operations.

e Code fenerator--Translates the interrmediate source
to the aprnronriate instructions of the

taraet rachine,.

1-39

N

.- -

el
Y4

- *

If a comoviler is well structured, the only portion
which should have to be re-implemented when transferring

to a new taraet is the code aenerator. If a future

taraget is a major consideration, then the specifi-

catien should require well structured proarams.

Implementation Language
Probably the sinqularly most impertant factor in deter-
mining the degree of transferahilitv to a new host is 5f
the implementation lanquaqe. The following is a krief
discussion of several imnlementatio.. langquages.
® Asserhly Languace

This is bv far the least transferable (to a new

host) of any implementation language. Tts major §

advantaqge is that the compiler will operate at

ravirur efficiency (assuming qood programming q
technioues). -

e Macro Lanauage ?
-

2Assuming the new computer(s) has a macro processor
that facilitates the implerentation of the macros
used to irmplerent the cormpiler, then this approach
rrovides a very econcmical methnd of movinag to a
new host. The disadvantages involve the compiler's

own translation cost and the fact that macro asserblies

are usually very <low,.

Systems Proaramming Languace

Often cormpilers are implerented in a special hicher
level lanquage. Usuallv these languages are subsets
of ALGNI, like lanquages. The cost of transferring
to a new host is then usually the cost of rewriting

the code generator of the systers programmina language.

Ponular Figher Lever Lancuage

fince nearly all major corputer ranufacturers suprort
FORTPAN, COPNL, and possibly ALGNL and PI-1, the

use of these lanauages nrovides major advantaces

if a new host is of primary imrortance. 1In addition,
thece lancuaces rrovide other benefits such as ease
of transfer of proqgramrers already rnowledaeatle

in the irplementation lanauage. The major disad-
vantace ie the inefficiencv of the compiler's oper-

ation, both in terms of speed and resource utilization.

Meta Compiler

There now erist numerous compilers which accent a
reta-linquistic definition of a lanauace and produce
a cormriler svstem. The major problem that exists in
thie approach is that almost always the corpiler is
verv noor in resource utilization (smace and speecd)

as well as roor in terms of cuality of code generation.

1-41

oo A g

MoAularity

“odularity is a fermal wav of 4ividing a nroorar into

a numbker of sulunits. Fach subunit should have a well
definad function a2nd relationshin to the rest of the
nrecram, There are well known afvantaaes in rodularity:
n€ nrimarv irnartance is that the=e nreagrar functions
vhick will need the rast nrmcorammer attention upen
transfer can often re isnlated and furctiorally iden-
tifiecAd ae Aistinet rodules. ™he rodules, if orcanized
and Ancurented nrererly, can re vorked on with little
refernnce tn, nr interferenrce with, the rest of the

arocram,

A essential asrect of these modules iz their isolation

from the rest of the ~rooram., ¥ach section shcouléd ke

a esemience of rroarammina lanauace staterments havino
a wvell marked start and end., The functimsn of the

mocdule and its interface with the rest of the proaram

o ernmnnm e it st et

shonld re sirnle and well Accurented., » medule
nerforrmina several closelv related furctions mav have
saveral entry noints. UVovever, one ertrv voint is

usuallv bhetter nractice. .

A cormniler svster vhere transferakrility is a2 rmajer

consiferation should specify ®hat the reodules which

!
~
4
[

are rmachine Aerendent te isclated to as few rodules

1-42

| as possible. The specification should also reguire

arpronriate Aocurmentation that descrires which modules

ZE need to be chanqed.

@ Parametarization i

Parareterization is a method by vhich a source prograr

O T s

may self-adjust to a prograr, hardware, or system
modification. fere numeric or symbolic items in the
prooram may require alteration if the same function

is to be performed in a new environment. These values
may be vritten into the code exnlicitly or they ray

he parameterized. In the latter case, symbolic

varishles are set to the anrlicalrle values in an ini-

tializatieon vhase of the assemhlv/corvilation. The
values chosen rav be directlyv initialized by programmer
codinag or thev may he set up or calculate”® by the

languaqge processerr.

Tf the value is written in by the programmer, it shoulqd

ke ir a well marked statement, with all such statements

Dty v

collected in one place. The dncumrmentation for each 1

value should be exvlicit in how and when a new value

is to re deterrired for the parareter. If the value
is to ke corouted, the corputation rmust he checked

out for a rance of values,.

1-43

2lthouach a transferred procram usually performs an
unaltered functicn on the new machine, parameterization
ray he used even more extensively vhen the proaram

function is altered Aduring transfer.

Parameterization reaquirements denend on the details

of the nroarams involved. Fach actual value in the
source code must te considered for narameterization as
it is Peing written., If the value and the represen-
tation of that value are incdependent cof any reasonalle
chanae ip machine amnlicaticons, score, or lanauage,

or if the oroaramming lanquaace cdoes not nermit a
symholic value in that context, then rarameterization

dees not annlvy,

In oeneral, over-parameterization is rarely a orecktlem,
esrecially in the assemhlv or corpilation nrocess.
"hus, the cost of narameterization is nontrivial only
if the lcoic of the nrooram or usage of the languaqe
rust he perverted. The value of pararmeterization, on

the other hand, rcan re consideralle.

Code Constraints
Preoqrar transferatility can te creatly enhanced by
avoidinag code t*at is Aifficult to transfer. Finding

ard using alternative eceode, howvever, Ffoess involve

)

additional proaramming costs which must be measured

against the benefits obtained.

For higher level lanquages, the prirarv code constraints
of concern involve the avoidance of language features
which are apt to be missing or altered, or which will
give different results when compiled on the transfer

target.

The lanaquaae features rost likely to be rissing or
different in other compilers are the lanaquage extensions
and the expensive or little-used standard features.
Unless a lanaquage was specifically extended to suit

an annlication, use of extensions can be avcided with
only a lirmited loss of efficiency. In those cases

where the standard lancuaae is inadegquate, the unusual

usaces should he isclated in modules for recode.

Aside from sulsets and extensions, two things in cgeneral
rmake code Adifficult to transfer - techniques that tind
to a narticular representation of data structures and
instructions, and those that rind to a particular
sequence of orerations. 2 rindine technique, then,

is any usage that takes advantage of, or is cognizant

of its own implementation. Vhen any portion of any

instruction is used as an operand, or vhen any address

1-45

is used which is not completely symholic, a binding
technique is being used. Program code may be cognizant
of operation sequences tecause they define a function

which must be reproduced when the prooram is transferred.

Program code which modifies itself has proven to he

bad practice for reasons of raintenance difficulty,

error proneness, and non-re-entrant properties. Pecent
machines and languages have taken steps to render self-
modifying code both unnecessary (e.g. execute instructions)
and Aifficult or imnossible (e.q. write protect). Higher
level language code does not directly allow dependencies

upon instruction representation.

Generally, unless the machine .3 deficient in indexing
and other dynamic address functions, representation-
dependent code may be easily avoided. Furthermore,
resource conservation realized through use of this
tyre of code usuallv amounts to only an insignificant

percentage.

For any particular machine, external data representations
correspond to predictable internal storage bit patterns.
It is seldom the case that those representations will

he equivalent over a variety of different rachines.

If the external representation used does not correspond

1-46

i
j
i
v
ii
i
!
‘
|‘
:

b
&'
:
{
E
3

to the function of the item, the internal representation
will becorme inaprropriate uron transfer. An example
of this tyre of code is character identification hy

corparison with srall decimal intecgers.

Similarly, pvackino several data iterms in a word will
kind the code with respect to word size. P data

item may bhe snlit by a word boundarvy upon transfer.
Tor example, 3 items of 6 hits each do not repack well

into a 1€ kit word.

Nperation secuence and data renresentation constraints
can also be corbined in ways which may seem of creat

value rut which definitely hinder ¢transferability.

? program mav be dermendent upon asrects of systerm
confiquration in ways that make it infeasitle to
transfer the program to a syster in which those

aspects differ significantly.

Those system attributes whick hecome severe constraints
are usually either system resources wvhich are heavily
used or devices which provide facilities not quali-

tatively present on the new svstem.

Primary storage is likely to be the constraint most

often felt. Tf a compiler is written for a machine

1-47

S

with a large amount of core storage, it may be infea-

sible to move to a machine with less storage unless
the program was initially written with this in mind.
cimilarly, compilers often 4o not adjust well to an
overlay/nonoverlay transition since basic alagorithrs
ray differ (overlav vrocessino often reauires a file
pass for each phase, where this would te unnececssary
with adeauate nrimary storage). On the other hand,
large vorirmary storage mavy have been crucial to
efficient oneration of the =roqrar, and it would he

wasteful not to use it.

Nne anproach to this problem, then, is tc consider
(and docurent) primarv storace size as a system
constraint precludinag code and nerhaps desian for

transfer to a machine with less storage.

cimilar considerations amply to random versus

sequential access secondary storaae devices.

In the area of innut/output, efforts must bte directed
tovard avoidance of explicit references to physical
devices which can permanently bind a prograrm to a
particular confiaquratien. Proaramrmers should desiqgn
and code with logical entities such as the system

input device (rather tran the card reader) or the

1-48

¥

e PR

.
TR e A emei ok R

i amensies

- "
— o i R i PR e

R D

o ——

PR TR 50 S,

object output file (rather than the tape punch).
Physical devices and their associated characteristics
(such as record length) must be parameterized and
isolated from the main body of the program as much

as possible.

Emulator/Simulator

The development of an emulator or simulator that operates
on one host and emulates another is another means of
transfering a compiler to a new host. This method

is almost always an unlikely alternative considering

the major disadvantage of excessive resource utili-

zation on the new host.

1-49

R

N
)
sl

-

1.6 Environment

The operating environment or computer system must be
well defined before compiler development begins.

Future systems are discussed in Section 1.5. The
initial environmental specification should be directed
toward two operational levels - minimum and capacity.
The minimal configuration for processing "average"
programs one at a time may be a milestone in development
and payment. The capacity consideration is the largest
or most (multi-programming) compilation(s) which are

expected in the application program developmental cycle.

This information affects several areas:

e Hardware acquisition and selection
e Compiler implementation

® Compliler transfer

® User base and profile

e Choice of operating system

e Programming capacity-size of source programs

A procurina agency which over estimates available core
storage, for example, may severly limit the size of
source programs and the numter of users who may run

~

simultaneously.

1-50

Purther areas of consideration are covered in Section 1.1,

Resource Acquisition, and in Section 1.7, System Interface.

PRSPy

1-51

ks s L.

s

1 1.7 ¢ystem Tnterface

The ease with which a user can access a corpiler file, -
link cormpiler object modules, and re-run compilations
is of paramount impertance in the specification of a

co~riler svster. ‘o tcel, no matter how qgeod, is

b a2

really useful unless it can be satisfactorilv applied

within the system.

Although some asnects of this problem seem self evident,
K they shculd not be left to the imaaination of the vendor.
b The snecification sheuld clearlv state the Aesired
systerm interfaces. ™he folloring chart and subsequent
descrintions +ill rrovide rerresentative specifications

E for svstem interface.

. __Operatina Svstem Interface
f Jobh Control lanquace Pequirerents
E . Interface with Svstem Text Editor
i Nbject Lancuaae]

. ~_Interface with Other languages
Suhbroutine T.inkaqes ._<
| _Pescurce Usaae

) COMPILEP SPECIFICATION - SYSTEM INTERFACE

Lol

1-52

@ Operatinag System Interface

A comniler interfaces with the operatina svster for

the followinc major tasks:

e 7o be aiven control to evecute

® To attain its share of resources

® To receive user input files

® ™o transmit user outrut files.
Tt is

advisable that a comviler's specification includes
dafinitions of operatinag svstem tasks to be used and
means by which it is to perform the above tasks. It is
al=o advantaoceous for the interface to the operating

svstem to he centrally located in the rinimal numher

of rodules. Vor evample, it is cuite roesible to have

four mndules for each of the four functions abeove.

RArcurents to the morlules can be used for deterrinino

the necessary tasks to be performed, as showvn lrelow:

® Cfulrroutine Name: Control

Function: Fntry point of compiler. flso includes
exit to operating system and any
necessarv interface for attaininag or
rresetting syster information (e.o.

obtaining date of compilation, etec.).

1-53

= maieTe A

PNy

e Subroutine Mame Pesources:
Function: Obtain internal storace requirements
for compiler.

Inputs: Arount of snace required.

e Subroutine Receive/Transmit
Function: Obtain/Output a record from/to
a user file.
Inputs: File name or numbher, buffer to
receive/transmit record, size of
record, mode (AFCIT, FBCDIC, Pinary,

etc.), Operation (Normal, rewingd,

end of file, etc.)

In order to insure the desired overating system inter- ‘>.?

face, the compiler specification should contain detailed B

#3
<.
N

descriptions of the ahove interfaces.

* ~at.

JCL Requirements

Yearly all rodern operating svstems reaquire a control
language specification (job contrel) prior to jeb

submigssion. The "JCL" descrihes the programs to be

executed and the environment for execution. It is Bl
crucial that minimal job control and knowledge of
overating system idiosyncracies re required for a

compilation.

Bl LN

2 user should not have to hecome a JCL expert to have
his proarar translated. Vsuali&, overating systers will
allov the invocation of JCL fror nrocedure lihraries,
therehy allovina a user the capability of riririzing
his JCL requirerents. It is reasonatle to include in
the srecification that JCL for 5l1 typical corrilatiorns/

executions he provided to simplify the user's interface

with the corniler.
Interface with the Svster Text Fditor

If the corpiler is part of a svster which contains
a text editor, then the compiler scurce inout files
skould te in a format that can lre used ry the text
ecditors. Often corpilers will encode the source,

thereby renderinc anv svster text editors useless.

Nkject Tanauaae

} languaage processor translates a source proaram to
a forr that is readilv loadatle into a corruter. This
forrm is calleé an cohject lancuage. »n existing syster
will usually contain loacders and linvace editors that
process the okject lancuage. The compiler specifi-
cation should stinulate that the olject lancuage e

corpatitle with the evistina system's olject lanquage.

Interface with Other lLanquages

If it is deemed desirakle to implement a system using
more than one language, it should be rade nart of the
enecification. Corratibility amcnag data structures,
orject languages, and file structures will enable the
use of additiornal svstem lanauage processors. This
is esrecially important with resrect to existing

assemhlers.

arroutine linkaces

"suallv a system will contain a standard rrocedure
for callina a suhroutine. This will include hoth the
activation of the subroutine And the passina of
arourents. Tf such a convention exists, it is strongly
advisable that the snecification include this as a
requirerment. Tf no convention exists (or if the
standard convention is deemed not vorthy of consider-
atimn), then the comniler snecification should reauire

a consistent rethod lre used throughout the comniler.

Pesource Tisaage

Pesource usace can he considered in twn hasic environ-
rents, compile time and execution tirme. There is

often a correlation hFetween expensive resource

1-56

utilization Auring cormpilation of a source proorar

and economical execution of the source program, or

vice versa. Modern softvare technology coupled with
% usuvally available syster software facilities (e.o.
overlay loaders, selective loading of orject rodules)

enakles compiler systems to rinirmize their resource

O U

requirerents.

~ -t paors
[

Usually there is no major benefit in having the
entire compiler core resident during corpilation,
{
Source compression technoloay, with efficient usace ;
|

of data and file structures, allows large compiler

i . e AT 23 e 3

systems to operate efficientlv withmut usvurring vast

; resources from the system. Tf left unspecified, the

: nrocurina acgency mav find their cormpiler usina enorrous
armounts of merory and resources. Therehy the corpiler

system hecores virtually a stand alone operation. I

CURATL - Y

User Profile

The nurber and types of users of a corpiler can have
large effects on its efficiency ard performance ratino.
Cornilers desianed to meet a wide ranae of source
nroaram sizes, for examnle, mayv not nroduce the rost
efficient code or mav reauire extensive link-loader
processina. P} one-nass incremental system ray compile
auickly rut execute slowvly. » multi-oass, optirized,

compiler ray compile slovly and execute rapidly, ete.

©imilarly, a comniler which is hiqhly ootimized and
canable of handlina larce source files is not efficient
for a tutorial situaticn reguirine fast resronse and

many users.

The procuring agency should identify:

® the prosnective set of users

® Dproarams

® experience levels

® percentage of tutorial or "fun" compilations

(as in a university)

nercentaaes

® life exmectancv or "production’
® real-time reauirements
® numher of simultaneous users

® AFesired resmonse tires

The user profile snecified should nrovide the bhasis
for accentance tests. Those tests which most closely

resermhle the user profile should corpile the most

efficientlv. '

T Y ST

Nt g

ld
PN

1-59

1.9

LA

.
3
;
;

Documentation

Documentation is vital to the successful use and main-
tenance of any compiler system. A compiler system with-
out adequate documentation is worthléss. A compiler
system's documentation can be divided into two parts,

internal (maintenance) and external (user-oriented).

Any compiler specification should include requirements
for sufficient documentation in both areas. The
following chart and subsequent descriptions will help
provide several insights into the types of documentation

that can be provided.

User Manual

Job Setup

Primer

Training Material

Compiler Limitations/Idiosyncracies

Diagnostic Description

Syntactical lLanguage Description

User Flow Charter

Compiler Source lListings

Flow Charts/Prosaic Description/
Variable Descriptions

System Generation

System Interface
COMPILER SPECIFICATION - DOCUMENTATION

1-60

® User Manual

Every compiler specification should require a user
manual. The users' manual should describe the usage
of all compiler features as well as examples illuse .

trating their use.
Job Setup Description

Often this can appear as part of a user manual (usually
an appendix). This describes how to compile and/or
execute programs. It should clearly specify each

step and the entire range of job submittals.
Primer

If the language is new, or if it contains different
concepts, or if it is to be used by relatively inex-
perienced programmers, it is beneficial to have a

primer specifically describing these attributes.
Training Material

In addition to primers, it is beneficial to develop
visual training aids and sample decks or terminal

inputs for a new compiler system.

1-61

Compiler Limitation/Idiosyncracies

This item often appears as an appendix. Although
essential, it is too often missing from the available
compiler documentation or is scattered throughout a
variety of manuals. It is vital that all compiler
limitations/idiosyncracies be contained in an easily

accessible document.
Diagnostic Description

All error messages should be contained in one con-
tiguous document (or a user manual appendix). The
diagnostics should include details of how and why
each error occurs and, if appropriate, what action

is to be taken.
Syntactical Language Description

This should be part of the compiler specification and
also be available to users. As mentioned previously,
a meta-linguistic notation ’ g. Backus Nauer Format)
along with a prosaic descr: .ion should be used to

specify all possible language constructs.
User Flow Charter

The inclusion of a program which will automatically

1-62

W

- »

generate flow charts for application programs may be

beneficial to users. The costs of this item must be
weighed against the potential benefits. Usually auto-
mated flow charts of higher level languages provide
little more than a slightly better pictorial arrange-

ment of the program flow.
Compiler Source Listings

It is essential that the compiler implementors provide
well-commented, well-structured source listings if the
procuring agency expects any type of reasonable main- ;
tenance or understanding of the programs. All good

programming habits, as enumerated by recent articles

(topics including structured@ programming, top-down
design, modularization, etc.) are beneficial to the
individuals responsible for maintaining or modifying

the compiler.

Flow Charts/Prosaic Description/Variable Description

The value of technical documentation is extremely

difficult to measure. Brief synopsis of the various

compiler elements along with flow charts of complex ;
algorithms are usually helpful to the maintenance

programmer. It is essential that a technical document

1-63

be provided if the compiler source programs do not

contain sufficient comments describing every variable.

System Generation

It is essential that a document be provided that
illustrates the methodology for symbolic modifications
to the compiler and then made to be operational as
part of a new system. The specifications should
always include this as part of the required technical

documentation.

System Interface

It is also important that technical documentation
exists as to what system facilities are used, how
they are used, and where they are invoked. Often
a new system facility will replace an existing
facility. Unless documentation is provided, the
maintenance/modification to support such changes

becomes extremely complex and costly.

1-64

B e St £

T T N T T A TR e

Schedule

The compiler specification RFP and vendor supplied
proposals should both contain an implementation schedule
with provisions for milestone payments. The actual
schedule time requirements vary tremendously.with language,
compiler efficiency, implementation strategy and hardware
constraints. Large scale compilers such as PL/1 may
require more than one linear year to initial completion.
Less efficient implementations of FORTRAN and BASIC may
require only a few man months. The actual schedule will
be a judgement based on choice of vendor, language and
options. Typical payment/acceptance milestones in

development can be identified, however.

® Compiler design - detailed written descriptions of
compiler modules, intermediate lanquages, object
languages, parsing and translation algorithms to
be used. This is the basis for compiler documentation
and should be done first.

e Parsing and Translation - a demonstration of
successful generation of intermediate lanauage from
a test source proaram.

e Code generation - demonstration of programs to
convert intermediate languaces to relocatable or

loadable object forms.

1-65

e Initial Configuration - a first stage compiler
capable of processing simple language forms to un-
optimized link or loadahkle object.

e Optimizer - A demonstration of compiled code which

has been optimized and executed successfully.

ahas. hic s Stties Shudey

® Self-compilation - if applicable--complete com-
pilation and optimization of the compiler programs
and subsequent use of the compiled object to run
additional tests.

® Performance Tests - compiler performance acceptance

; tests.

E e Documentation Package :
1 ® Training !
f ® Agency Trial Period - before final payments, the !
- user organizations should make exhausted use of the

. compiler and critique its performance. j

e Compiler Modification - as a result of user tests,
; ' enhancements and alterations may be required for

maximum use and efficiency.

® Maintenance Period - final developmental payment
should be made before the beginning of the
maintenance period. Maintenance may be defined
as correction of bugs not found in previous testing.
Changes to the specifications and enhancements are

not maintenance items.

1-66 ;

1.11 Acceptance Tests

A vital part of any compiler specification is the
acceptance test. Usually the compiler implementor will
generate a set of test cases during the development phase
and the procuring agency will nod their tacit approval

as acceptance tests. Far too often these tests are later
found to be incomplete and subseguent usages of the

compiler cause the discovery of numerous problems.

Several existing languages have a set of tools that aid
in the validation of a compiler. The quality and
comprehensiveness of the acceptance tests are extremely

important in the initial acceptance of a compiler.

wWith the increasing complexity of the new compiler systems,
it is necessary that acceptance tests proceed beyond a
mere superficial state of initial debugging. The desire
to "just get it working" has prevailed in so many compiler
development efforts, that the initially delivered product

has often proven to be a future pandora's box.

The compiler specification should include statements
specifying the use of automatic program testing tools,
if available. If not, then the following chart lists some

of the tests which should be provided. It is usually

1-67

advisable that the acceptance tests be developed by the
procuring agency shortly after the design phase of the

compiler.

A great need exists for structured methods in the testing
of a compiler system.. It is impossible to test all
possible paths in a complex compiler system. For example,
assume a compiler system has 254 gifferent paths (a very
small number with respect to a fairly complex compiler
system). Using a computer with an internal speed of 1
microsecond, it might seem reasonable to verify all
possible paths, while in actuality, approximately 1000

years of computer time would be required.

The following chart lists those items which should be
included as part of the acceptance tests. The development
of test cases for each of these items should be made part

of any compiler specification in order to assure a

reasonable degree of reliability for a new compiler system.

Syntax Test

Statement Test

Diagnostic Test

Accuracy Tests

Execution Test

Limit Tests ?

Special Feature Tests

Resource Test

COMPILER SPECIFICATION--ACCEPTANCE TESTS

Syntax Test

A set of test modules that verifies the compiler's grammar

and handles all legal syntax structures.

Statement Test

A set of test cases that 'verifies the proper translation
for each possible statement, and their use in conjunction

with other statements.
Diagnostic

A set of test cases which generates every known campiler
error.. If an error can be created for a variety of

circumstances, then each possible cause should be made a

part of the test,

1-69

~
e
.

Accuracy Test

A set of test cases to verify the accuracy of compiler
specified mathematical operations, functions, etc.
This includes tests that convert from one numeric mode

to another (eqg. integer to floating to integer, etc.).
Execution Test

A set of test cases that verify that the compiler system

translates all possible statements to executable code.
Limit Test

It is essential that a set of test cases be developed

which check all compiler limits. For example, a test

case that includes numerous identifiers, extremely long

symbol names, maximum parentheses, maximum loop nesting, |
maximum continuation, etc. Often these test cases are

ignored and prove to be future bottlenecks.
Special Peatures Test

A set of test cases to validate the proper operation of
all special featureg should be required and so stated in

the specification.

1-70

Resource Usage

A "typical application program” should be developed to
measure resource usage. This includes both compile and
execution time resources. Often this test case will have
to include special hooks into the compiler so that statis-
tics (time, space, 1/0 accesses) may be properly recorded.
This test case can be used to verify that the maximum
specification requirements (resource usage) are not

exceeded.

1-71

1.12 Maintenance and Support

The acquisition of a compiler system should include plans
for its continual maintenance and support. Normally a
vendor will maintain a software product at no cost to the
procuring agency for a jointly specified time frame after
product acceptance. As mentioned previously, even if the
acceptance test cases are implemented with extreme care,
it is impossiblé to verify all paths of logic within a
complex compiler system. Therefore, the specification
should include plans for product maintenance throughout

the expected life of the compiler system.

Numerous programmers have used an existing "field tested"
compiler only to encounter problems after five to ten years
of compiler usage. The complexity of a compiler system,
and its critical importance as a software tool warrants
future maintenance requirements be established at the

time of specification.

AsS new problems are encountered in a compiler, it is
advisable to modify the acceptance test to include these
problems. This will tend to insure error free future

versions.

1-72

———— ,__“ :

- oo AW~ 0

AT e e oo TN

e Lo RN i o ol A RS AN

The utility of a compiler system is determined, in part,
by the ease with which it may be used, corrected, modified,
and updated. The following descriptions of the items in
the chart below enumerate the requirements for effective

maintenance of a compiler system. /

Technical Documentation

Debug Tools

Skilled Programmers

Warranty Contract

COMPILER SPECIFICATION -~ MAINTENANCE
Technical Documentation

It is vital to any maintenance effbrt that efficient
technical documentation exist. Since the source program
for the compiler is the only guaranteed actual program
logic, a well structured source is the best assurance of

future maintenance.

Small modules, meaningful variable names, and sufficient
commentary to explain algorithms and routine functions are |

a prerequisite to a maintainable system,

oL

e Debug Tools

When problems arise)it is almost imperative that debug
aids exist to help isolate and eventually correct the

problem.
® Skilled Programmers

Usually the implementors of compilers are well versed in
the technical requirement of developing language processing
systems. Often junior level people are hired to maintain

\ a system. The specification writer should consider the
level of maintenance required when deciding on or accepting

a set of individuals to maintain the compiler.
e Warranty Contract

It is almost always advisable to have the company personnel
that implemented the compiler be responsible for its
warranty. If the warranty is to exist over an extended

period of years, as if often the case, the specification

should attempt to have more than one individual cognizant
of the internal workings of the compiler system. 1In
addttion, the agency which has the maintenance respon-

sibility should be held responsible for the transfer of

i o

knowledge if the individuals are transferred elsewhere.

The specification should state the response time for the
correction of problems. In addition, a standard method
of reporting problems should be adopted. Periodic status
reports should be made available to users whenever new

problems arise or are corrected.

Part 2 COMPILER ACCEPTANCE

The development of an objective decision-making process

when accepting a compiler is extremely important in

insuring a successful compiler system. Part 1 provided a
means of identifying the features and facilities available
for a compiler system and for their reasonable specification
to the vending organization. The specification charts
develoved in Part 1 also provide a meaningful basis for
development of acceptance criteria. 1In reality, the
weighting factors or scores introduced in this section are
only meaningful in terms of the importance or desireability

of items specified in Part 1.

The approach taken in this guideline iz to change numerous
qualitative evaluations into quantitative scores with
weights provided for each cateqory. A summation of the
evaluation provides a compiler score. The score is then
used as an index into an acceptability chart. Since this
guidebook was not develcped with anv varticular language
or user group in mind, the relative weichting scores

assigned are based on a hypothetical compiler system.

The representative acceptability chart below is based

on a perfect score of 1000 points.

L b -

COMPILER ACCEPTANCE CHART

Score Evaluation
950~-1000 Excellent
850-949 Satisfactory

Temporarily
750-849 Acceptable
Completely

0-749 Unacceptable

It seems advisable that future compiler system contracts
include, as part of the payment, an amount based on the
acceptability score. This additional financial remune-
ration could provide the incentive needed to turn accep-

table and good compilers into excellent compiler systems.

In the following sample compiler acceptance matrix, the
acceptance of a compiler is divided into ten parts. PRach

part is given an empirically derived total point potential.

The values specified below should be modified to the

particular requirements of the compiler system being

IR - Y

developed. The matrix shows each of the major categories,
potential and eventual actual scores. 1If certain categofies
are not applicable to the compiler systems acceptability,
then the total roint potential of the remaining categories

should be modified accordingly.

2-2

Potential Acceptable Actual
Compiler Category Score Score Score
Accuracy and
Reliability 400 360
Resource
vtilization 100 80
User Interface 50 40
Documentation 100 80
System Interfaces 50 40
4 Options 70 60
3
g Extensibility 30 25
Transferability 100 80
} Schedule and
Installation 75 65
ser Profile
dherence 25 20
' TOTAL -2000 850
COMPILER ACCEPTANCE MATRIX
' Topics or performance items which do not meet the

; acceptaﬁie score must be re-worked and evaluated until

: the minimum acceptable score is attained for that item.

The followinag pages further delineate each of the major
categories when accepting a compiler system. Each major

category is broken down into a sub-matrix.

W RIS R AR

Y4

2-3

e by a s
.

2.1 Accuracy and Reliability

The speed of compilation, minimization of system resources

and superlative user options are of little value unless

the compiler is able to generate valid object code for

e

higher level source statements. The attributes of
accuracy and reliability are best judged by acceptance

test program runs that are compared with expected results.

There are several attributes of a more general nature

) which can be checked for in a compiler that affect the
overall system's accuracy and reliability. The following
matrix depicts the items used to measure a compiler'’'s
accuracy and reliability. This matrix is organized by

the features and structure of languages and compilers.

|

Potential | Acceptable Actual
ategory Score Score Score
Compilers Internal Structure 100 90
Syntax and
Semantics Analyzers 25 23
Assignment Statements 75 70
Declarative and
2llocation Statements 50 45
Control Statements 25 23
Subroutine Statements 25 23
Input/Output Statements 25 23
Limits 25 20
\
v ocumentation/Diagnostics 50 43
TOTAL 400 360

COMPILER ACCEPTANCE ~ ACCURACY AND RELIABILITY

® Compiler Internal Structure

A compiler can be portrayed as comprising two major

processing functions.

. Generator Translator
(Lexical, (Code
Syntax Generator)
Analyzer)
snmpiler

These compiler elements likewise reflect the five

basic factors which effect compiler reliability:

~
.
’

Generator Functions

Translator Functions

Initialization,
Options and Control

LexIcal Scanning,
Reserve Word Search,
Text Encoding,
Syntax Analysis

Symbol Table,
Searching and
Production

Allocation and
Packing Declaration
Processing

Syntax and
Semantic Checking

Code Generation
Operation Code
Addressing

Register Utilization

Optimization

Source versus Machine
Register Utilization
Program Organization

[First Pass Assembly

]

[Second Pass Assembly

)|

| Listing and Debug Aids |

These compiler functions directly relate to hardware,

operating system facilities, language and the imple-

mentation techniques employed.

Although this representation is somewhat simplified

or general in nature, it dces provide insight in%o thc

inherent opportunities for modularization.

Modulari-

zation is the single most important factor in predictinc

reliability and ease of maintenance.

W)
-/

A compiler implemented using structured programming
techniques is also a candidate for high reliability

scores.

In general, then, if a particular set of acceptance test
cases are successfully executed and the compiler is

both modular and structurally programmed, there is a
high probability that similar programs will be valid.

Structured programming and modularization and both
somewhat subjective concepts to measure. Because of
this, a visual inspection of listings and internal
structure flow charts may be necessary. Some items

of interest in such an inspection include:

PPy

® parameterization

e meaningful source commenting

® open-endedness

e size of sub-programs and dependence on complex
scope relationships

°® simplicit§ of linkages and arguments passed
between modules

® 1indirect addressing and deeply nested pointer

schemes

o degree of isolation of target dependent modules

@ re-entrancy

® recursion

® host dependent coding
® Syntax and Semantics Analyzers

Basic components of any compiler are the syntax and
? semantics analyzers, sometimes called the parsing
| algorithm. The SOFTECH report and other recognized
studies have indicated that the choice of parsing
algorithms is not as crucial to reliability as is its
x implementation technique. Items to include in tests
of this area are:
e scanning - number of blanks, multiple operators,
f deeply nested syntax
@ spelling -~ use of similar but not equal names
J such as abbreviations, extensions,

3 P reversed letters

® searching - speed of search as a function of !
label size, number of labels
® recovery procedures - skipping erroneous constructs,
. pinpointing errors
o addressing errors - out of range or undefined
labels flagged before "assembly"
e node definitions - default variable classifications

e uninitialized variables

scaling and conversion anomalies - infinite and
0 results predictable at compile time

bit packing

nesting levels

constant conversion - artificial or host induced

magnitude and accuracy constraints

e Assignment Statements

’

Assignment statements are given a high relative weighting

in determining accuracy and reliability. Although the

definition of assignment infers simply computing and

storing a value, almost all of the compilers' functions

are tested:

parsing

evaluation of expressions
searching

data conversion

function linkage

variable initialization

fetch and store

optimization

parallel, serial, array addressing

code generation

cross-reference and user aids

In particular, in languages allowing multiple assignment,

a2 simple test may detect complex errors. For exampls:

I » signed item

J = array of floating point items
J(I),I = {(I+1)/3(1)

may be defined as:
(Ig+l)/J(1g)> 13
(I9+1)/3(Ig)->» J(1g)

or as:
(I0+1)/3(Ig)=> I
(I141)/3(11)=>J(I3)

or other possidbilities dependent on language definition,

and compiler analization techniques, and data conversion

algorithms.

Sample assignment statements can and should be easily

hand checked for expected results.

e Declarative Statements

Declarative statements exercise parsing, searching,
allocation, initialization, subroutine linkage, addressing
Items which can be best checked

structure and routines.

include:

@ declarative statement syntax

e mode, value, or array structure assumptions

2-10

® levels of subscripting-indexing

e+ o i

= ® parallel structure

- ® packing

e data conversion

fi e interfaces to assembly/higher languages
® visability of variable placements

e overlay and egquivalence

e continuation statements

§ , e statement sizes

j e addressing range and virtual locations

e Subroutine Statements

Subroutine or subprogram statements are particularly
important for checking scope, modularity and addressing.
Subprograms should be compiled separately and also
in-line to verify language rules.

® Addressing technigues may become cumbersome or

inefficient in separately compiled structures.
e Identically named variables may be erroneously

addressed or set in neated subroutines.

e High usage core, such as directly addressed
pages in base register machines, may be easily
over-loaded as the number of routines and/or

argquments increases.

2-11

e Linkages or register contents should be maintained.
® Re-entrances or recursion may not exist.
@ Artificial calling linkages or nesting limits
E may exist.
; @ Registers may be unused or unavailable causing
inefficient code.
o
E e Control Statements
g i These statements control program flow and sequence of
)

execution. Tests in this area should include:

loop control and exiting

subroutine calls and returns

subroutine control arguments

computed transfer ranges, defaults, error
detection and data conversion

user warnings

parallel and embedded scope

BEGIN-END structures

conditionals: 1IF, THEN, ELSE, WHILE
addressing range and technique

instruction set and condition code usage

@ Input/Output

There are several major areas of reliability which are of

concern when verifying input/output statement compilations.

2-12

‘
'
}

These include:

® Timing dependencies - computations may be improperly
made if instruction sequence execution proceeds
during input/output. Similarly, execution times
may increase if wait states occur unnecessarily.
Data may be lost or filled during hardware mal-
functions.

® Machine independence - the modularization of I/0
routines, pointers and run-time package linkages
should be verified.

® Artificial coding restraints - source language usage
should not be tied to record sizes or block control
flags unless specified in the language.

® Parity and data checks should be verified to insure
integrity of the source program computations.

® Format statements and similar input/output

structures should be tested for data conversion,

packing and error checking capabilities.
Limits

Internal compiler structure limitations can be tested

via several of the statement types previously listed.

Of particular and common interest are ranges of values for:

2-13

compiled program array dimensions and execution
time index values which are out of range -
default conditions, error recovery, compile

time checks, maximum values

label sizes

character constant sizes

record sizes for I/0

array dimensionality maximums and the relationship
of dimensionality to object code efficiency
POR-DO loop nesting limitations

FOR-DO loop scope limitations

nesting of array indices

nesting of subprogram function calls

nesting of IF THEN ELSE structures

number of subprograms

number of continuation lines and characters

in a statement

maximum program (loadable)

maximum number of items, tables, arrays, symbols
dynamic table re-allocation (when a limit is reached)
operator/operand sequences

nested parentheses

COMMON or COMPOOL sizes

2-14

i
r

Documentation and Diagnostics

Accuracy and reliability are also important in system
and user documentation. The results of previous language
constructs and compiler implementation tests should have

been predicted in the vendor documentation.

This is particularly true of limit tests, data conversion
anomalies and input/output characteristics. 1If vendor
documentation does not contain a high percentage of
correctly predicted limits and anomalies, then it is
probable that the vendor has not performed adequate

reliability and accuracy tests.

Similarly, re-hosting or re-targeting documents should
be randomly checked for accuracy. If a routine is
documented as having a particular function, it should
be checked by visual inspection of the code and by
trace and dump techniques.

All error messages should be purposely generated by test
and compared to user documentation. Again, if the
documents do not reflect the actual results, some

feeling for compiler reliability may be surmised.

The following list is a representative sample of conditions

which should be included or checked in acceptance tests.

2-15

The lanquage and computer system chosen are paramount

to specification of specific accuracy tests. The

vendor should prepare these tests using at least the

following:

existing compiler or hand-calculated benchmark
results

misspelled names

duplicate names

mode definitions

uninitialized variables

absent terminators

bad nests of all types

improper variable modes (floating point loop
control)

recursion

improper data conversions

GO's and SWITCH's on bad values

constant redefinition: CALL SUB(S)

SUB (X)

X=X+l

values of FOR loop variables outside the loop
magnitude of loop variables (use large values,

negative values, etc.)

2-16

" Ay

bad patches

erroneous packing specifications

improper semantics

multiple, undefined operator sequencies: X=Y++1l
user un-optimized code

compiler "private" symbols and characters
floating point underflow/overflow

array overflow/underflow

undefined variables

misplaced parameters (TABLES)

incorrect data types: FPLOAT (FLOAT(

assembly langquage subprograms

2-17

2.2 Resource Utilization

Efficiency of the compilation process and of compiler
produced object code can be viewed in terms of use of

available resources. These resources might include:

Potential [Acceptablel Actual
Category Score Score Score
CPU_processors (time) 40 30
Core storage 10 8
; Instruction set 20 18
} eripheral devices 5 4
Legisters & Addressing 10 8
i Lroqrammer Productivity 10 8
Numeric Accuracy 5 4
TOTAL 100 80
)
;¢ COMPILER RESOURCE UTILIZATION

Acceptance tests prepared for the purpose of judging
compiler resource utilization must somehow be compared
to known standards. The comparison of one compiler to
another is often meaningful only if both show the same
pool of resources, Otherwise, it is the configuration
of hardware that is being judged and not necessarily

the compiler software.

i
H
[}
i
i

hrl
"¢
L

]

{\1

P
o

Similarly, both compilers would be required to solve the

same compilation problems - parsing, evaluation, opti-
mization, and code generation. If such a comparison
corpiler is available - same language, host and target,
the new compiler may be compared exactly on a test by

test basis.

Each compiler may excel or falter in a particular test
case situation. Therefore, a compiler based comparison
will, at best, determine the "efficiency" of the new

compiler only in terms of the type of test. Compiler A
may be efficient for small subprograms while Compiler B

may do better in large program situations.

It appears that the only reliable benchmark for resource
utilization comparisons is an assembly language imple-

mentation of the same application program.

The area most likely to be deficient in benchmark
comparisons is instruction set utilization. For example,

the statement ALPH=ALPH + 1 often produces

LOAD ALPH
ADD $ONE
STORE ALPH

#ONE DATA 1

2-19

N
-
B

This utilizes four memory locations and three instruction
"ceyecles". 'If the target computer contained an increment
or memory-add instruction, the code could be reduced to:
INCREMENT ALPH
or LOAD 1
MADD " ALPH

At this point, it should be stressed that computer design
can have a great deal of influence in compiler speeds and
core storage requirements. Certain aspects of computer
architecture are especially important to language processor
design and performance. In particular:
e Direct Addressing Capability
The computer should have the ability to readily
address and access information and data consistent
with the system core sizing requirement. For
example, if the system core requirements were
4096 words, 12 bits of a computer word would be
necessary to effect direct addressing access;
if 32,767 words were required, then 15 bits
would be necessary, etc.
@ Multiple Purpose Register Facility
The computer should have a set of multiple registers

which can be utilized and manipulated in a variety

2-20

alouteiak ittt ibianadioiaimeniidhlidnh it Snatit G iet miateshbiontin ittt isaieiaimaihieceniih

of different fashions. Several functional charac-
teristic of these registers are that they should
function as: i

a. Accumulators

b. 1Index registers
c. Masking registers
d. Control registers
e Partial Word Accessing ‘and Utilization Facility
The computer should have the ability to fetch,
store, test, position and manipulate variable
length contiguous portions of a computer word.
' Associated with this capability must be the
ability to treat the data as signed or unsigned
variable length information when involved with
‘ the particular operations.
b - e Conditional Testing and Branching Capability
The computer should have the full capability of
‘ supporting comparative relational conditions
such as equal, not equal, less than, less than
or equal, greater than, and greater than or
equal. This capability must ideally provide
for register-register, register-memory and

memory-memory comparative facility. {

A
’
- Y,

2-21

>
-

Arithmetic Computational Capability
The computer should have the capability to
support the full computational capabilities
of addition, subtraction, division, multipli-
cation and negation. This facility should
provide for full and partial word operations.
Shift Operation Capabilities
The computer must have the capability to support
both algebraic and logical shifts in two directions
on individual multiple purpose registers and
between multiple purpose registers.
Logical Operation Capabilities
The computer should have the capability to
support the logical operations: AND, OR, NOT,
exclusive OR, EQUIVALENCE, etc.
Special Instruction Capabilities
The computer should have a group of special
purpose instructions designed to accommodate
frequently occurring programming situations
in the particular application system. These
include the following types of commands:

a. Execute {

b. Store zero

c. Transfer on register or memory gzero

or non-zero.

2-22

d. Transfer on register or memory negative
e. Halt
f. No operation

g. Test, set, reset, test & set, test & reset

h. Increment/decrement

If the above features are not anidable, efficiency ratings

must be adjusted to reflect computer inadequacies.

; \ ' Once a set of assembly language benchmarks has been
‘ prepared, the following statistics may be gathered:
e compilation time = compilation computer time/
assembly computer time
® programmer productivity = source program
preparation cost/assembly program preparation cost

e object storage = compiled program size/assembly

o

program size
® object time = execution time-compiled/execution
time/assembled
; ® numerié accuracy = precision of compiled program
results/precision of assembled program results

e compilation storage = total core storage for

compilation/assembly
® overhead time = minimum cpu time necessary for

void or "nothing” programs-compilation/assembly

”
4
e,

"~

o 2-23

i

o

® overhead storage = minimum size of object programs
® capacity = maximum source program size-higher level/
assembly level
. e peripheral = devices used (tape, disec, drum) and

number of accesses

Many of the statistics listed can best be obtained using
built-in performance measurement facilities. A compre-
hensive system for compilation/execution measurement

& statistics gathering should be included in every compiler
procured. Their cost is minimal and their value in

programmer aid and compiler "tuning" is considerable.

These statistics gathering facilities can be and should
be capable of producing size figures by statement type
for:

e declaratives :

e assignments

e data conversions

® loop controls

e structured controls (IF,GOTO, etc.)

e input/output

e modularity constructs (subroutine linkages) 1

The figures of merit in these instances include:

‘e compilation time

2-24

e compilation space

® register utilization in the object

® machine features used - indexing, indirect
addressing, pointers, overlays, instruction
set, hardware stacks

execution time

execution space

1/0 time

I/0 wait states

disk/drum/tape accesses

record sizes

data region size
' e bit size - packing (full word?)
e number of compilations/assemblies to workina 1

) programs

The resource utilization sub-matrix scores are computed

from the statistics gathered and compared to empirical

(desired or experienced) values. The actual assignment
! of scores depends upon the statistics available and the 5

weight given to each attribute.

¢
.

2-25%

b

CATEGORY

RESOURCE UTILIZATION STATISTICS

INPUT ATTRIBUTES

CPU Usage

Compilation time
Object time
Overhead time
I/0 wait time

Core Storage

Compilation storage
Object storage
Overhead storage
Capacity

Bit size - packing

Data recion size

Instruction Set

Instruction frequency counts
Special instruction usage

{increment, memory add, etc.)

Peripheral Devices

1/0 times
I/0 accesses by type (disk,
drum, tape, etc.)

Record sizes

Registers

Register usage frequency counts
Indexing
Pointers

Stacks

2-26

CATEGORY (continued)

INPUT ATTRIBUTES

Addressing

Direct
Indirect
Pointers
Indexed
Stacks

Sub-words

Programmer Productivity

Number of compilations/
assemblies per program,
Statistics available on
language usage,

Statistics available on
statement speed and bottlenecks,

Time to prepare programs,

Numeric Accuracy

Precision of program results.
Number of data conversions.

Use of special registers

(floating, double, etc.).

1&f

User Interface

The acceptability of the compiler - user interface is not
as quantitative in nature as accuracy or resource utili-
zation. However, there are several important aspects of

the user interface which can be identified. These include:

e Partial compilation facilities

® optimization levels

® gquided optimization
e grammar/syntax checking
® object suppression
e diagnostic override

® Assembly level facilities
e assembly level listing
® user access to symbols/tables

® easy subroutine linkages

® Diagnostics
® explicit messages rather than numerical codes
® error pinpointing - to source line symbol, operator,
punctuation, etc.
@ previous error recovery - eliminate domino-effect
errors

@ error messages within the listing, not at the end

2-28

® error levels - warning, bad, disastrous, etc.

@ error recovery - agssume obvious or non-fatal

conditions and continue compilation

® spelling - check for "close" spellings and proceed

with compilation

A representative weighting scheme is:

Potential |Acceptable| Actual
Category Score Score Score
iagnostics 35 29
artial Compilation 10 8
ssembly Level
acilities 5 3
TOTAL 50 40
USER INTERFACE

2-29

2.4 Documentation

A compiler may be functionally correct and translate

code properly without being completely documented.
However, future maintenance, extensibility, re-targeting
and user interfaces will suffer accordingly. 1In addition,
a poorly documented compiler is highly likely to be

an unreliable one.

There are three classes of documentation of concern to
the procuring agency: compiler implementation, user's

guide, and operator's quide.

In the implementation documentation, several items will
seem unimportant upon initial receipt of the compiler.
Nonetheless, they will become more apparently valuable

as time progresses.

Implementation Documentation

® Compiler limitations and idiosyncracies
; e Compiler source listings
e Plow charts, prosaic descriptions of every compiler
module and variable
o System interfaces
e Re-targeting guidelines with a sample actual re-target

effort °

2-30

e Extensibility guidelines with a sample extension

— e e T

e Compiler organization, allocation, tables and packed

variables

;
|

e PFunctional breakdown (parser, expressions evaluator,

i 4

optimizer, etc.)
® Pach "pass" functions

® Debug aids and measurement tools

oo

Re-generation procedures

e Causes (internal) of error messages
e Input/output, records, blocking, etc.
® Language of implementation

e Algorithm description - polishing, parsing, etc.

e Database definition

® Parameter parsing and subroutine linkage

e Variable addressing scheme
® Lexical scanning, text decoding, searching

r ® Special modes such as loop-save, conditional

® Syntax analysis
e Compiler generated symbols and naming conventions
® Access to symbols - symbol table structure

t e Proposed enhancements and costs

This documentation must be supplemented by a comprehensive

guide to expected modification difficulties and accurate

2-31

in-line comments in the compiler code. These comments
should be checked for accuracy against other documen-

tation and test results.

The second category, user guidelines, should be equally
exhaustive and complete. However, unlike poor imple-
mentation documents, errors or omissions in user guides

will become rapidly and glaringly apparent.

User Guidelines

® Diagnostics - description, cause, correction procedures

e Language description - a comprehensive user oriented
description of the language implemented with numerous
examples, cross-referencing and job setup procedures.
This document should contain two approaches: beginner's
tutorial and experienced users' reference.

e Capacities, limits, minimum requirements

e Compiler idiosyncracies

® Transferable programming guidelines

e Dialectic or subset differences, items not in adherence
to a standard

® Visual training aids

e User flow charter

e Assembly/other language interfaces

P

The operator's guide is also the type of documentation
that will be immediately verifiable. The procuring

agency should insist on a "no-vendor"™ installation by
agency personnel. Most difficulties and omissions in

the operator's gquide will be rapidly apparent.

Operator's Guide

® Devices necessary to system residence (disk packs,
system tapes tec.)

® Peripherals used during execution - mounting procedures,
labeling conventions, etc.

e System (compiler) installation procedures - step by
step

® Re-generation procedures

o Disk file maintenance - scratching and compressing
schedules and limits

e Core requirements

® Multi-task versus stand-alone operation

e Operator messages and responses

® Compiler options (operations oriented)

e Hardware/console switches

Segmy

i IO N

- 1

Potential | Acceptable| Actual
Category Score Score Score
|[Compiler Implementation 50 40
5 User's_ iuide 40 33
bpera*:or 's Guide 10 Li
TOTAL 100 80
DOCUMENTATION
i \ Further explanation of the items listed in this section
4 [}

may be found in Section 1.9, Documentation Specification.

\\

.

4
-

2-34

2.5 System Interfaces

User access to computer files, linking of object modules
and conditional compiler use and outputs are just a few
of the system interfaces each user will experience. The
following items should be provided by the vendor and
adequately described. Procuring agency acceptance of

these items should not be assumed.

e Job control requirements
A e Operating system usage
® Text editor and similar utility interfaces
e Obiect language interfaces with other system routines
and languages
e Device independence/dependence

e System subroutines

® Resource requirements

® Compiler debug facilities/requirements

® Load time system overhead-core,devices, etc.

e Batch, remote, interactive and on-time requirements

e Execution time and 1/0 wait states expected as a
function of system load

® Minimal configuration

® Re-entrancy

® Multi-processing

o)
e
- »

2-35

L

For additional descriptions please refer to Section 1.7, 4

System Interface.

- | Potential |Acceptable]| Actual
1_; Category J_Score Score Score
] . Job control 20 15 i
Resource Requirements S 4 %
System Routines S 4 i
Devices - 1/0 10 8 %
Utility Interfaces 10 9 ‘
s TOTAL 50 40 : ?

SYSTEM INTERFACE §

OV VT SRS U S

2-36

1
+
)
¢
1
?
,?
1.

4

4 P

-, }j

2.6 Options

Section 1.3 discusses compiler options which may be

specified in the procurement of a compiler system.

“E : Option requirements and needs are divergent among
: installations, personnel, and applications and are

E usually dictated by available resources.

3

* Of all the optional features listed in Section 1.3,

the most variable and expensive will be optimization.

The following chart represents a general concensus of
the relative importance of the most popular optimization
techniques and can serve as criteria evaluating compiler

optimization acceptance.

2-37

dONILNQD §
9 VLOY
MO $9X Joredg MOT MO Mo'1 S 0LUO
/paady X dI
UOYSIdAULl 41 [ed}boT

(uotrssaadxa
3uo 9jeurwyITd)
umyTpan 83X paadg ybTH 807 Mo 9 0OLOY
S 0LOD
X 41
8,41 [e21b0oT

dE-V+G~-Aw

ybtH 53X aoedy Mo11 ybtH ybtH a-v-
/paads T (d=") +G~A=X
uotrjeniead uofssaadxzg
MO 89X aowvdy MO’ MO MO L+G=X
/paads uoglenyeag jue3IsuUC)|
(5) Ld0s
MO 894 paads MO'T Mo MOT uorjenteag uorjaungd
(T+I) Z+(T+I) A=X
umypan 83X paads mo'g unypoun Mo 2o (T+I)+0T/(T+I) =X
uogzenieag
UQTSSIXdX] UOWMOD
$dOOT JO 3INO SdTqRIaARA
unTpan sax paadsg MO unTpan MO Juapuadap-uou LUTAOW
SUOTSsaIdXy uowmo)

sajuau IusWIRIS
-23e3s Teuox3a wexboxg
330Ard| A3FATIDONPOI4 ute:y uorstTos(-e3ndwo)| IIeIASAQ anbiuyday
123 I3uwexboad]| paztuyady
ﬁ paseaIou] 8vaay uotrjevortddy

o

AHOUVAIIH NOIILVZIWILAO ¥4TIdWOD

w?

2-38

e e i oA it

YbTH -- paads unypoan ybti unypoan T UOT3WI0T TV
: J03RTOWNDDY
ybtH - sordg untpan #01 Mo pasn
/paads 519351b3d JO Alouwen
YbTH -- paads YOTH YbTH ybTH UOTIROOT TV
1a3sybod Xopujx
ybty - paady YotTH Ny pon . wunipan - suoT3onIjsul
9IempleH papualxly
TeIoad; burzyITIan
MO0 - paads MO wuny pan MO | uorjentead uorssaidxy
a[qriILCA XITdWOD
Zeah=X
wnypan -- pPodds | wnypon YbTH ybtH suotr3lRIBdY uouuwﬁomk
203 9p0) SUFT-uI
X-G=
M0 - 90 ﬂnm M0 M0°] MO G+X-=A
/paady bUTI3PI0-3d UOFSSIIAXY
M0 - paads MO MO MO07] SITWY'T buj3laaauo) °p
) =(T+I)X
yb1H - paads ybTH ybry YOTH w(T+I)X
suoT3Iejndwo)
3dyaosqng Juepunpay °o
YbtTH - aoeds ybTH YbTH ybtH s3diaosqng
/paads JO butssdappy °q
11103 47} - paads M0 YoTH unypon §U4007T buysdeiToD °®
sdooqg yod 20 ud
s§3uaul [sjuUswojels
-93e35 TeuoTl wexbHoxd
330Xeq |[A3FaT30NnpOoayg utes| uorsSTo9Q -e3ndwo 11eI3A0 anbtuyoay,
T1ex340 Iswwexboad | pazywriado swaiy uoTIROTTAdY
paseazou] N

AHOAVIHIH NOILVZIWILAO YIATIdWOO

2-39

o— e

&
1 -

Potential | Acceptable |Actual
Category Score Score Score
User Debug Pacilities _12 10
Optimization of Code _ 13 _11
Measurement Tools 17 _15
Test Aids __10 9
Documentation Aids] 4
Cross/Reference/
Dictionary 3 _2
Text/Source Processingi 5 4
Partial Compilation 2 2
Compilation Directives| 3 3
TOTAL 70 60
OPTIONS

2-40

2.7 Extensibility

A compiler is extensible if it can be easily modified

to include new features. Perhaps the best way to test
for the acceptability of this feature is to insist upon

a demonstration. In other words, after the compiler

has been implemented and delivered for acceptance testing,
a new feature, statement or primitive should be added

to the langquage. A detailed written description of all
steps taken to implement the new feature should be kept.

This would include:

® source updates

e source additions (new code)

e re-compilations

® re-linking

e self-test

® errors, cause and corrections
e man-hours

® estimated relative difficulty

This workbook and other deliverable documentation should
give an indication of the degree (score) to which the

following extensibility attributes have been used:

e documentation

® modularity - number of programs changed and

2-41

percentage of code changed in each module

e open-end design - array structures, tables,
intermediate lanquages that required re-definition
e structured programming - degree of difficulty
in locating appropriate code and success in
changing it
e compiler restrictions - syntax, usage of the
new features
\ ® parameterization - array entries, pointers,
)

tables, parsing algorithms

See Section 1.4, Extensibility, for additional descriptions.

Potential | Acceptable| Actual

Category Score Score Score
) Modularity 9 8
; Documentation 6 S
Open-ended 4 3
. Parameterization 5 4
Structured Programmina 4 3
. Compiler Restriction 2 2
TOTAL 30 25

EXTENSIBILITY

2-42

2.8 Transferability

K Transferability of a compiler can refer to changing the

host or compiler resident computer or to changing the

target or object machine. Perhaps the most likely and
therefore critical of the two is re-targeting. Most
installations which procure a rather expensive compiler
expect to utilize the host machine for an indefinite

period of time. New applications and target computers

can be required at relatively short notice, however.

v ——

The design aspects which most directly effect transfer- l
ability of host or target are the same as those listed

for extensibility:

e modularity

® documentation and@ source comments
e parameterization

® structured programming

e open-ended design

In particular, all host and target machine dependent
attributes must have been parameterized and/or isolated

to specifically identified modules. The documentation

must clearly reflect all machine dependent constants,

algorithms and programs.

- o g . . o

' §
The suggested test for extensibility is also the best

way to Jjudge transferability - change the conditions.

It is considerably more expensive to re-host or re-target
{p most instances, however. For this reason, the exten-
sibility test can be used as an approximation of re-hosting
difficulties. If that test showed high reliability of
comments, modularity and parameterization, then the
re-hosting task has probably been minimized. Of course,
re-hosting difficulties are also a function of imple-
mentation language -~ technique. Self-compiled or inter-
pretative compilers will be most easily transferred.
Assembly level coded compilers are virtually non-trans-
ferable. Sfince re-targeting of the compiler is highly
probable, transferability of object is of most immediate

importance. Modularity is again the keyword.

In modern compiler technology, it is possible and
relatively easy to isolate all target machine dependent

code generation into one set of independent modules.

Optimization modules, if present, should be mathematical

processes divorced from machine parameters.

The code generator portion of the compiler should be
approximately 308 of the total depending on language and

target.

Again, the best way to judge re-targetability is to
f'f procure another target and insist on use of agency or
different vendor personnel in the effort. If this is
possible, then the previously assigned scores for modularity,

documentation and parameterization can be used again.

F PotentIal [Acceptable [Actual
Category Score Score Score
{ Modularity 40 32
? Documentation 20 15
& Parameterization 10 "8
Implementation Lanquagq 30 25
TOTAL 100 80

TRANSFERABILITY INDICATORS

' Additional discussion of transferability may be found

in Part 1.

. P B i ot p e S e s e

2.9 Schedule and Installation

Assigning a score for schedule and installation performance
is a highly subjective task. The schedule had been deter-

mined in the specification and contract negotiation phases.

If §h is assumed that the schedule was a realistic one,
then failure to meet delivery dates and milestones will
probably result in payment delays. In most cases, delay
of payment is wusually sufficient penalty to the vendor.
A score is somewhat valuable, however, in helping to

& determine efficiency and reliability of the compiler. f
Proper milestones can help to insure checkout and

, acceptance of each phase of the compiler and thus

improve the chances that the final product will be
reliable.

Schedule milestones for a typical compiler project were
discussed in Section 1.10. For acceptance scoring purposes,

the following major categories can be used.

Potential | Acceptable | Actual
Cateqgory) Score Score Score

. Milestones On-Time S 4

Documents Complete at
Fach Milestone 15 13

iTestone Coding
Complete , 10 9
Errors at Each
Milestone 10 9
aintenance

35 30
K TOTAL 25 6s

W

SCHEDULE AND INSTALLATION

-

2-46

Errors at each milestone refers to the number and severity
of errors encountered - usual, fewer than usual, abnor-

mally large number, etc.

Maintenance arrangement refers to the ease and rapidity
in which error reports are handled. Does the proper
person(s) respond or is the task shuffled from senior

to junior personnel? 1Is the time of response acceptable,
quicker than expected, poor? Does there seem to be a

lot of head-shaking and throwing-up-of-hands or are

errors handled quietly and professionally?

Milestone codinag and documentation should be complete.
was the code/document submitted just to meet the dead-

line and incomplete or inaccurate? Does each milestone

delivery "stand alone" and reflect modular design %
technigues?

"
Training will probably be given the highest weighting f
in this category. Some items to consider in scoring ;
the training function include: @

e Adequacy of personnel used - were they the implementors
and users, or professional teachers?

® Range of subject material - did it include the full
range from design concepts to maintenance and

enhancements?

2-47

- e Y —

Depth of subject material - was each program module,
source lanqguage type, and system generation procedure
covered completely?

Time frame -~ is training on-going, repeatable, hurried,
etc.

Agency personnel - are the trainees confident in their
use, maintenance, and modification ability? Do they
"understand™ the compiler or are they just going
through the motions, etc.?

Options - were all options explained and demonstrated?
Error detection and reporting - were procedures
developed and explained for determining when bugs
exist and for reporting them to the vendor?

Hardware and operations - have the proper personnel
been instructed on use, initial program load, error

recovery, and similar operational problems?

2-48

- ——— it . - sttt s 8 3 .4 4w e . L

tawi L. L

2.10 User Profile Adherence

In Section 1.8, several aspects of the User Profile or
cross-section of user requirements were listed. At this
point in the acceptance testing of the compiler, the
procuring agency must determine if the delivered product

truly adheres to the desired coals of the end-users.

Several subtle changes may have been introduced which
could have the effect of eliminating classes of users'
problems. For example, were fixed-point variables
changed to floating point for "efficiency" by the

vendor? Are fewer users able to compile simultaneously

while maximum source program size has increased/decreased?

The suggested weighting scheme is based on a broad range
of users and should be changed according to the parti-

cular agency's most basic requirements.

Potential | Acceptable [Actual
— Category Score Score Score
Compiler type -
batch, etc. 8 6
Pesponse Time S 4
Number of Users 7 6
Relative Efficiency
(Compile/Execute) S 4
TOTAL 25 20

USER PROFILE ADHERENCE

N4

[y

Part 3 Compiler Acceptance Evaluation Matrix

The Compiler Acceptance Evaluation Matrix is a

summarization of the sub-matrices listed in Part 2.

Please note that the specification matrices in Part 1
were not included in the Acceptance Evaluation Matrix.
Although it might seem desireable to place specifi-
cation and acceptance items in a side-by-side or

hierarchial fashion, this is really not meaningful.

Part 1 discussed svecification decisions, documents,
costs and similar items to be prepared or studied by
the procuring agency. Thus, a rating or performance
score cannot be assigned to these activities and no
scores were assigned to specification items in

Part 1.

It is reasonable, however, to use the discussions in
Part 1 as a basis for preparing potential minimum
acceptable, and actual criteria evaluation scores

for the items listed in Part 2. If the procuring
agency stressed a particular item in its specification,
then all acceptance criteria effected by that item

would be weighted heavily.

3-1

For example, if precise lanquage definition was stressed
in the specification, then the accuracy and reliability
of syntax/semantics analyzers (acceptance criteria)

would be heavily weighted.

The sample Compiler Acceptance Evaluation Matrix provided
is based@ on a hypothetical "average" compiler. The
values assigned, therefore, represent composites of
values derived from the analysis of several languacges

and their compilers.

The procuring agency should orepare a new set of
potential scores as a function of language, project,
user agroup and other constraints discussed in Part 2.
For example, a file management system written in
COBOL would probably not depend heavily on numeric
accuracy (past 3 decimal places) or even resource
utilization: but, it is likely that system interface

would be extremely important.

In the Compiler Acceptance Evaluation Matrix, the

following titles are used:

POTENTIAL SCORE: The weight or importance of

the criteria in relation to

a total score of 1000.

MINITMUM ACCEPTABRLE:

ACTUAL SCORE:

PASS/PAIL:

COMMENTS:

-
T
Ll

The minimum POTENTIAL SCORE
which would constitute an

acceptable performance.

The value or percentage of
POTENTIAL SCOPE which was
actually observed in evalu-
ating or testing the compiler

criteria.

A check indicates that the
actual score was less than
acceptable: a failure. 1In
this case, re-work and re-
evaluation would be necessary
before total acceptability

can be attained.

Procuring agency notes or
corments regardina the test
used, score attained, value

of the criteria, etc.

AN €L Te303qng
S » '3 Aorvandoy JfaoumN @
8 8 ot A3jaT3onpoad zsummexboxg e
9 8 1] ¢ bugssaappy/saoysibay e
S 1 4 S sa0faeg (eadydiaad e
N 01 8T (1}4 IIS UOFIONIISUI @
¢ 930N 99§ A 0 8 01 abrviols 910D €
6t 119 oy (SWTL) S$I0883a0Id NdD ©
UOTIVZETTIN IDINOSAY
89¢ 09¢t ooV Te303qus
T 9ON s | AN 13 £V 0S uoFITIUIWNOOA r
174 174 Ss¢ SITUYT O ™
(14 | X4 114 s3uUdWA3R3S Indang/andur e
| £ £e 174 S3USWIVIS JUFINOIqAS €
1 44 X4 1Y 4 s3udwajvls TOIUOD O
1 Sy 0S UOF3ILVDOTIV/UOTIRIRTOIQ ©
L oL SL S3UBWAIVIS JUIWNUDISSY ©
1 24 1 X 4 114 I9zATeuy
SOTURWOS/XRIULS @
1 b6 06 00T 2In30na3Ss (RUISQUI ©
m A3ITTTqQRITad pue Adewandoy
r
. SLNINROD TIVd ad0Is dTdVLdIDOVY J400S VIdALIYD dFTTIdWOO
yssid TNALIY KOWINIW IVILNALOdD

XIYIVA JTdWVS NOILLVOIVAL

FONVLAIAOOV HATILWOO

S 930N 995 zr oy 0s TeIoqns

01 6 o1 s§3dejaajur AIFTFIN @
8 8 1D O/1 ~ 8303430 @
14 1 4 S SOUTINOY WIISBAS o
1]) S SIUIWIIINDIY @0INOKIY @
91 ST 0z sbenbuer 1oa3u0l qopr e
830"vZINUI woIsdg

N €L o8 00T te3o3qng
8 L o1 SpFnY 8,303vxadg e
St 133 oy epINy 8,208 ©
P S93JON o9y N o€ oy 0S UOTIRIUIWITduI xoTFdwo) o
uoTIVIUBWNIOQ

€ 930N 9es 14/ oy oS telolqns
¥ € S SATITTTIORS ATquessy e
(1} ¢ 8 ot uoTIVTTdwoD TeIIARNd
ot 62 SE S8OF3Isoubeyq e
90wjIajzuyl zes(
SINIWWOD TINd d400S8 218V LddOOV 44098 VINALIYD YATIAWOD

/SSY TNQLOV NHAWINIWN | TVILNILOd

XIULVYW dTdANVS NOILVOIVAL

dONVLddIOY dITIAWOD

% 8L 08 001 T®303qns

(1] s2 ['Y3 abenbue] uogaeusdWAITdWI @

8 8 (1] § uoyjIvZjIIIWRIRd O

8 90N d3s| A S ST 0z uofIRIUIWNDOG @

S¢ 4% or Ajjaernpon e

LA3T1TqRae3zsuRiy

L 930N ¥} A 1 X4 sc (113 Teloyqng

1 4 Z SBUOTIJTIISIY JA[JdwOD @

 / € b pburwweiboag paan3dnI3ys o

L4 14 S uoyIevziIIJIURIR ©

’ € 1] pepug-uadgo e

N < S 9 uor3IRIUAWNDOOQ O

8 8 6 L3FaeInpon e

&A3¥T1TqTISUIIXT
9 930N ¥3s L9 09 oL 1e303qns -
—— — ——]
€ € € E9ATIVAITQ uoFIR[Fdwo) e -

< 4 4 uojIRTFdwo) TeiIIReg O

S v S PbUISEII0IJ IIINOS/IXDL ©

€ 4 € JDOUDXIJIY/S80ID @

1 4 L4 S SPIVY UOFIVIUSWNDOG ©

o1 6 11] ¢ SPIY I8, o

LI ST LI S$TO0L JUIWIINSRIN ©

I1 19 ¢ €T uoy3IezZIwuFIdo zarFdwo) e

zI (1} 4 <t S9TITITONR4 bnqaq z9sn e

Sucyldo

SLNAWWOI TIvd J4d008 dT9NLdd o0V dd02S VIIALIYO dATIdWOO

/SS¥d TNOLIV WOWINIW TNILNALOd

XI4dLVW dTdWYS NOILVOIVAI

JONVLAIOOV dd1IdW0OO

b

LS8 0S8 0001 TYLOL
F44 114 114 e303qns
€ ¥33ION @3S N Z ¥ S (a3noaxz/ayydwo))
S9JOUdIOY3Jd IATIRIOU ©
S ¥ S QWL d8uUOCdsay o
L 9 L 8196 O IIqunN @
8 9 8 adiy aerydwo) e
QouaI9Yypy 91TFoxd XI8N
L9 s9 SL e3o3qug

1€ 0¢€ g3 bupuyeal/dOuUurudIUICNY @

01 6 (13§ SUOJISITEN
yoeg ¢ 810xxz o

6 6 1} § ssauajzatduod
PUTPOD IVOISITIW @

1 3 ¢ £1 ST ssauajardwo)
a397dwo) uoyjeU3WNIOg ©
4 L4 S QUL UO SUOISITIN ©
UOTIRTTIRISUI pu® ITNRPIYIS
SLNIWWOO TINd 24005 ITEVLA OOV 340Is VINALIYD YATIdWOO

SSNd TENLIY WOWINIW | TVILNALOd

XIMINW FTIWNS NOILVATVAL

JONVLAZION ¥ATIdWOO

3-7

Notes from COMPILER ACCEPTANCE EVALUATION SAMPLE MATRIX

Note

Note

Note

Note

Note

Note

) Note

Note

. Note

1l:

Documentation incomplete or erroneous. Must be
redone. Note: Actual total exceeds minimum yet

compiler is not satisfactory due to documentation.

Compiled Program would not fit in core. Basic
benchmark not satisfactory. Code optimization

and more efficient code generator necessary.

Satisfactory.

Errors in documentation.

Satisfactory.

Very Good.

Errors in documentation.

Incomplete, erroneous documentation.

Would not compile basic benchmark adequately.

3-8

SV T IR ST SUPIP BT LI PR

[w3oaqns

Koeandoy ODyaASWNY
A3ITATIONPOIG IueIbOolqd
buyssaappv/sxa3stbay
$30743Q Twasydiaag

IVS UOTIONIIBUY

obvarlyg 930D

(SWTL) SI088300ad AdD

UOTIRZFITIN ¥2IN08aY
Te303qus

uoIRUIWNI0Q
SITWE]
s3udwalwls Inding/Indur
SjUdWI LIS IAUTINCAQNS
SIUIUWBIVYS TOXIUOD
UOTINOOTIV/UQjIvIRTINQ
SIUBWIILIS JUIWUDTESSY
Z3zAeuy
SOTIURWIS/XRJIUAS
2INJONIJIS [euxdJuUI

AITTITIQETT™Y pue Adwanooy

SLNAWWOO

1IN 34005 JONVLd 3OOV d400s
waa& TINALOY WOWINIW AVILNALOd

VIdALIYOD dIA'TIdWOO

XTJdLVW NOILVNTVAL

dONYLAIOOV JdA'TIdWOO

3-9

N

12303405 _

g30vIIAUI AITTTIN
0/1 - 832%A3@
S§9UTINOH Wwo3sds
s3usuwaxtubay soanosay
abenbuey [0aI3UO0D qOr

S30RJIDJIU] WIISAS
Te303Qng
opINY §,303WaA9do o

9PINY §,198)) ©
uotiejuldwatdul xayfdwo) e

uot3eIUIUMOOQ
] 1e3o3qns
m S§9TITIToRd ATqQuWossY e

uorjerydwo)d (erIzed e
sd¥3soubeyy e

aowv3IIJUI I3y

SLNAWKOD TIVd J4008 JONYLdIOOVY dd00s VIYILIND dJTIdWOD
/ssy¥d TINQLIVY WOWININ TNILNALOd

] XIdLVA NOILVOTIVAYL

dONVLdAJOV d3TIdROD

-~

Tejo3qns
sbenbue] uojjzejudwaTdur
UOFIRZJaIIIWRIRY
uoFIRuAUMO0g
A3jaernpoy

A3FTIqRI9zsuvay

Te303qns

SUOTIDFIISOY IS Fdwo)
butuweaboxg paanjzoniys
UOJIRZFI3BWRIRG
papud-uadg
UOTIRIUIWNDOQ
K3jaeynpoy

A3F1TqTSuUaiIxa

12303qns

S3AF309811Q uoljeTFdwo)
uojIRTFdwo) TeFIIRd
buyssad0ad 32aNn05/3XIL
8DUBI9IIY/BE0ID

SPIY UOTIVIUBWNDO0Q
8SpIV 388

S$T00L JUIWIINKRIK
UOTIRZTWTIdO x9(yduo)
S9¥3711084 bngaq aas()

suo13do

SLiINWOD

TIvd

SSvd

Jd00s ' 19V LdIOOV 44008
INALOY WONIRIW IVILNILOd

VINILIED JdATIdWOD

XIdLVYN NOILVA'IVAI

dONVLJ3AOOV dITIAWOD

3-11

FREN ancen »

INLOL
1e303qns

(a3noaxg/a{ ydwo))
S9TOUDTOTIIA IATITIN
awyl Isuodsay

8138} FO IIQuUnN

adLyl z91t1dwo)

20UIIYPY 9T1T303d a8sN
1e3034ns

pugutRIL/IoURUIIUTRY O
JUOISITTIW

yoeg v sx01xy e
ssauajzardwo)

HUTPO) DUOISITIW @
ssauazatdwo)

939T7dwo) uofjzeIUdUNDOg @

SWTL UO DUOISATIW ©

UOT3IRTIVISUI puR ITNpPayds

SINAWNOD

TIvd
SSV¥d

44008
INALOY

1aVLddooN
WONINIW

4008

TVILNALOd

VIdALIYD ¥ITIdWOO

XIYLVN NOISVATIVAL

JONVIAZIOV ddTIdWOD

A8

-

3-12

APPENDIX A REFERENCES

Aho, Alfred V., Ullman, Jeffrey D., The Theory of Parsing
Translation and Computing, Volume II: Compiling,
Prentice-Hall, 1973.

Brandon, Dick H., Segelstein, Sidney Esg., Data Processing
Contracts - Structure, Contents, and Neqgotiation, Van
Nostrand Reinhold Company, 1976.

Hays, David G., Introduction to Computational Linquistics,
Americal Elsevier Publishing Co., Inc., 1967.

Higman, Bryan, A Comparative Study of Programming Languages,
Americal Elsevier Publiching Co., 1967,

International Computer Systems, Inc., A Proposal For
"pA Statistics Gathering Package for the JOVIAL Language,”
RADC RFP No. F30602-73-C-0062, 1973.

Knuth, Donald E., The Art of Computer Programming, Second
FEdition, Volume 1, Addison-Westley Publishing Co.,
1968.

Lee, John A. W., The Anatomy of a Compiler, Van Nostrand
Reinhold Company, 1967.

Minsky, Marvin (Fditor), Semantic Information Processing,
The MIT Press, 1968.

Neighbors, Michael A., "Assuring Scoftware Reliability,"
"Computer Decisions,” December, 1976,

Proprietary Software Systems, Inc. (Fleiss, Joel; Phillips,
Guy), "B Statistics Gathering Package for the JOVIAL
Language," RADC Report No. RADC-TP-73-381, January,
1974. AD#775380/9G1I.

Proprietary Software Systems, Inc., A Proposal For "Criteria
for Evaluating the Performance of Compilers," PRADC
RFP No. TR-74-254, October, 1974.

Proprietary Software Systems, Inc., "Programming for
Transferability,” RADC Report No. TR-72-234, September,
1972. AD#750897.

PR VALTATWIET L TG T ORDER T I YRS T

SR TRUR IO

h)
‘¢
~

RADC document, "Notes on the Future Considerations Regarding
Compiler Specifications."

Sammet, Jean E., Programming Lanquages: History and
Fundamentals, Prentice-Hall, Inc., 1969.

Shirely, Richard, "Performance Evaluation Computer,"”
September/October, 19%72.

Shirley, Lynn D., "Compiler Specification Guidance,"”
July 31, 1973.

Softech Inc., (Bloom, Burton H., Clark, Mac H., Coe,
Robert K., Feldman, Clare G.), "Criteria for
Evaluating the Performance of Compilers,"
RADC~TR-74-259, October, 1974.AD#A002322.

System Development Corp., “A Guide to Computer System
Measurement.”

Walsh, Dorothy, A Guide for Software Documentation,
Advanced Computer Techniques Corp., 1969.

Acknowledgement

Proprietary Software Systems would like to acknowledge
the contributions of the following individuals to the
S preparation of this report.
7 Marilyn Azaria
James Leggett

Lois Orgo
Douglas White

In addition, Proprietary Software Systems acknowledges the
sponsorship and excellent support of the Air Force System
Command, Rome Air Development Center, Griffiss Air Porce

Base, New York 13441.

[P

~
<
L »

METRIC SYSTEM

BASI' UNITS:
—Quantity . Unit S Symbol _
length metre m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd
SUPPLEMENTARY UNITS:
plane angle rrdian rad
solid angle steradian sr
DERIVED UNITS:
Acceleration metre per second squared
activity (of a radioactive source) disintegration per second
anguia acceleration radian per second squared
angular velocity radian per second
ares square metre
density kilogram per cubic metre
electric capacitance farad F
electrical conductance siemens S
electric field strength volt per metre
electric inductance henry H
electric potential difference volt v
electric resistance ohm
electromotive force volt v
energy joule]
entropy joule per kelvin
force newton N
frequency hertz Hz
illuminance lux Ix
luminance candela per square metre
luminous flux lumen Im
magnetic field strength ampers per metre
magnetic flux weber wh
magnetic flux density tesla T
magnetomotive force ampere A
power watt W
pressure pascal Pa
quantity of electricity coulomb Cc
quantity of heat joule)
radiant intensity watt per steradian
specific heat joule per kilogram-kelvin
stress pascal Pa
thermal conductivity watt per metre-keivin
velncity metre per second
viscosity, dynamic pascal-second
viscosity, kinematic square metre per second
voltage volt Vv
volume cubic metre -
wavenumber reciprocal metre
work joule }
SI PREFIXES:
__Multiplication Factors Prefix
1 000 000 000 000 = 102 turs
1 000 000 000 = 10° Rige
1000 000 = 10* mege
1000 = 10} kilo
100 = 10? hecto*
10 = 10" doka*®
0.1 = 10~ deci®
0.01 = 10-? cent{®
0.001 = 10-? milti
0.000 001 = 10-¢ micro
0.000 000 001 = 10-* nano
0.000 000 000 001 = 10-12 lco
0.000 000 000 000 001 = 10~ omto
0.000 000 000 000 VU0 00t = 10~*® atte

* To be avoided where possible.

*US. GOVERNMENT PRINTING OFFICE: 1977-114-038/233

mis

Formulas

{disintegration)s

rad/s
radss
m
kg/m
AV
AN
Vim
V-s/'A
WIA
VIA
WIA
N.m
K
kg-m/s
{cycleys
Im/m
cd/m
cd-sr
A/m
Vs
Wh/m
Jis
N/m
As
N-m
Wist
Vkg-K
Nim
WIm.K
m/s
Pas
mis
WIA
m
(wave)m
N-m

SI Symbol

T
G

L - - B go n.e,:rwz

